
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2309

Robust Camera Calibration using Discrete
Optimization

Stephan Rupp, Matthias Elter, Michael Breitung, Walter Zink, Christian Küblbeck

Abstract— Camera calibration is an indispensable step for aug-
mented reality or image guided applications where quantitative in-
formation should be derived from the images. Usually, a camera
calibration is obtained by taking images of a special calibration object
and extracting the image coordinates of projected calibration marks
enabling the calculation of the projection from the 3d world coordi-
nates to the 2d image coordinates. Thus such a procedure exhibits
typical steps, including feature point localization in the acquired
images, camera model fitting, correction of distortion introduced by
the optics and finally an optimization of the model’s parameters. In
this paper we propose to extend this list by further step concerning
the identification of the optimal subset of images yielding the smallest
overall calibration error. For this, we present a Monte Carlo based
algorithm along with a deterministic extension that automatically
determines the images yielding an optimal calibration. Finally, we
present results proving that the calibration can be significantly
improved by automated image selection.

Keywords— Camera Calibration, Discrete Optimization, Monte
Carlo Method.

I. I NTRODUCTION

Generically, calibration is the problem of estimating values
for the unknown parameters in a sensor model in order to
determine the exact mapping between sensor input and output.
A wide range of computer vision applications exist, which
require an accurate calibration of the visual system. In these
applications, certain quantitative information is extracted from
the 2d images and overall performance depends on calibration
accuracy [5]. In the context of three-dimensional machine
vision, the sensor is represented by the camera including
its optics. Hence, calibration is the process to determine the
internal camera geometric and optical characteristics and/or
the 3d position and orientation of the camera frame relative
to a certain world coordinate system [9].

Camera calibration is usually performed by observing a
special calibration object, which in most cases is a flat plate
with a regular pattern marked on it using colors causing a high
contrast between the marks and the background. The pattern
is chosen such that the image coordinates of the projected
reference points can be measured with high accuracy. Once
the relationship between the 2d image coordinates and 3d
world coordinates is known, the perspective transformation
of the visual system can be estimated. To attain this, the
calibration images must suffice certain constraints in order
to ensure that the underlying mathmatical algorithms are
well-posed. In the literature, the ill-posed setups are often
referred to assingularities or degenerated configurations[8],

The authors are with the Fraunhofer-Institute for Integrated Cir-
cuits (IIS), Am Wolfsmantel 33, D-91058 Erlangen, Germany (e-mail:
stephan.rupp@iis.fraunhofer.de, http://www.iis.fraunhofer.de)

[10]. Unfortunately, in everyday calibration work, some ofthe
acquired images yield significant calibration errors or even
originate from such ill-posed configurations. Hence, thereis a
necessity to carefully examine each of the images.

II. RELATED WORK AND CONTRIBUTION

Camera calibration has been studied intensively in the past
years, starting in the photogrammetry community [1] and more
recently in computer vision [9], [8], [10], [3], [4]. According
to Heikkilä and Silv́en [3], there are four main problems
when designing a whole calibration procedure: control point
localization in the images, camera model fitting, image cor-
rection for radial and tangential distortion and estimating the
errors originated in these stages. Most of the research has
been devoted to model fitting and only few works can be
found in the literature about the other stages of the process
such as feature point localization, cf. [5]. Additionally,the
literature neglects the problem of image selection, that isto
determine the images that are likely to result in small model
fit errors. However, this is an important topic since ill-posed
configurations or poor image quality can negatively influence
the calibration procedure and thus lead to significant errors.
Hence, we suggest to extend Heikkilä and Silv́en’s list by
another task concerning the identification of the images that
yield the best calibration result. In this scope, the work being
closest to ours is that of Ouellet et. al. [6] who address
the problem of predicting the quality of calibration images
by analyzing their feature points. Ouellet et. al. present an
acutance-based quality measure [7] for circular calibration
marks that can quickly indicate static or motion blur in the
images. This in combination with an interactive assistant
tool for geometric camera calibration eliminates the needsto
carefully examine each of the images and thus facilitate the
calibration process [6].

However, the proposal of Oullet et. al. focusses on user
interaction and is not able to predict degenerated configura-
tions that typically result in high errors. Therefore, we suggest
to apply a stochastic and deterministic optimization technique
in order to automatically determine the optimal subset of the
pool of aquired images yielding the best calibration resultwith
respect to the model fit error.

III. C ALIBRATION

The characteristics of the imaging system are determined by
the well-known calibration technique by Zhang [10] modelling
the relationship between the 2d pixel coordinates and 3d world
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coordinates by a projection matrixP, which maps points from
the projection spaceP 3 to the projective planeP 2:

P = λw
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The 3 × 3 matrix A, whose four entries are calledintrinsic
parametersmodels the imaging process whereas the4 × 4
displacement matrixDw describes the external orientation of
the camera (extrinsic parameters).

The Zhang method requiresn ≥ 2 shots each containing
the image of the calibration pattern withm feature points
on it. Each feature point represents a mapping from the 3d
world frame to the 2d image frame and yields an equation in
a linear equation system that is solved for the components
of P. These camera model’s parameters are then adjusted
within a non-linear optimization procedure incorporatinga
correction of radial and tangential lens distortion. As amerit
functionfor the optimization the mean̄ǫ of all projection errors
ǫij is considered and its minimization is persued yielding an
improvement of the overall model fitting quality:
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The projection error of a single calibration featureǫij is
defined by the Euclidean distance between its initially ex-
tracted image coordinates(uij , vij)′ and the corresponding 3d
world coordinates(Xij , Yij , Zij)′ being projected to the image
plane with the projection matrixP acquired by the calibration
procedure. The mean̄ǫ of all these errors yields an appropriate
measure for the quality of the calibration [10].

IV. SUBSET DETERMINATION

In everyday calibration work, usually a set ofn input images
I = {ι1, ι2, . . . , ιn} is considered for calibration whereas
some of the acquired images may originate from ill-posed
configurations. Typically, these images are seldomly known
beforehand, so that neither considering all then images nor
a human-made subset selection will in general yield the best
calibration result.

In the following we address this problem and apply the
mean projection error in order to determine a subset of images
that yields a minimal overall projection error with respectto
the whole image set. We present a Monte Carlo based method
and a deterministic extension in order to identify the optimal
subsetIopt.

Performing an exhaustive search in order to determine the
global optimum is not feasible since the parameter spacePI

is very large as it consists of allNex possible combinations
of the n input images with at least two images and hence is

Nex = |PI | = |{X : X ⊆ I ∧ 1 < |X|}|

= |2I \ {∅}| − |I| (2)

= (2n − 1) − n = 2n − (n + 1).

Due to the fact that the calibration procedure requires at least
two images (cf. section III), the power set2I of the image set
I needs to be degraded by the empty set and all the singletons.

For an example, let us assume a set ofn = 20 calibration
images and an estimated average calibration time oft̄ = 0.5s
per image. Then the expected timet for the determination of
the global maximum by an exhaustive search will taket =
(220−21) ·0.5s = 524277.5s that is approximately 146 hours
or 6 days, and thus will be impracticable for every day use.

For the remainder, we assume then elements of the cal-
ibration image setI being partially ordered by an arbitrary
relation. We identify an element at positioni (the i-th image
ιi) with the i-th unit vector

{ιi} ∈ I 7→ ei = ( 0 0 . . .
i

1 . . . 0 0︸ ︷︷ ︸
n

)T i = 1, . . . , n,

and model a certain subset by the coordinate vectors =
(s1 . . . sn)T , sj ∈ [0, 1], i.e.

s = (0 1 . . . 0 . . . 1)T = 0 e0 + 1 e1 + . . . + 0 ek . . . + 1 en.

Here, sj = 1 denotes the containedness of thej-th image
in the corresponding subset. With this modelling, the subset
selection is equivalent to the optimization problem

min
s
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where ǭ(s) denotes the mean projection error for the whole
input image setI with respect to the projection matrixPs

that was obtained by the calibration from the image subset
represented bys.

A. Monte Carlo Method (MCM)

Due to the huge discrete search space we propose a stochas-
tic selection scheme for solving the discrete optimization
problem. We use a Monte Carlo Method (MCM) which is
inspired by the well-known Random Sampling Consensus
(RANSAC) [2] and thus makes use of random choices.

The method’s key idea is to randomly choose combinations
of the input images and keep the combination that yields the
minimum mean projection error with respect to all the input
imagesιi ∈ I.

In more detail,r unique subsetssl, l = 1..r, are randomly
choosen from the search spacePI = 2I \ (I ∪ {∅}), that is
the power set of input images excluding the singletons and
the empty set. In order to completely cover the search space
and enlarge the convergence range, the sizekl = ||sl||

2
2 of

individual subsetssl is also randomly choosen from the closed
interval [nmin, nmax] with 2 ≤ nmin ≤ nmax ≤ |I|.

For each of the subsetssi the projection matrixPsi
is

determined by calibration. In our experiments, we apply the
well-known calibration method by Zhang (see section III).
Once the projection for a subsetsi has been determined the
mean projection error̄ǫ(si) is calculated for all the images
in the input image setI from their correspondences. Finally,
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Algorithm 1 Monte-Carlo-Method based image subset deter-
mination for an image setI
Require: r, nmin, nmax, I
Ensure: 2 ≤ nmin ≤ nmax ≤ |I|

D = ∅ // set of drawn subsets
sopt = (0 0 . . . 0 0)T

ǫopt = ∞
while r ≤ |D| do

draw a subsets with s /∈ D andnmin ≤ ||s||22 ≤ nmax

D = D ∪ s
Ps = Calibrate(s)
ǭs = MeanProjectionError(Ps, I)
if ǭs < ǫopt then

ǫopt = ǭs
sopt = s

end if
end while
return sopt

the subsets∗ that yields the minimal mean projection error is
choosen as the (sub)optimal combination.

Once all ther subsets have been evaluated, the current
combination is considered to be the optimal solutionsopt =
s∗. Thus, the calculation of the (locally) optimal solution is
determined withNMCM = r evaluations.

B. Deterministic Extension

In order to improve the optimization procedure, we extend
the former approach by a deterministic search strategy that
refines a given solution. This strategy starts from an initial
subset and deterministically adds or removes new elements
in order to identify an improved combination. The selection
strategy is a combination of thesequential forward selection
and sequential backward selectionalgorithm, that are briefly
explained now.

In an initial step, thesequential forward selectionstrategy
identifies the best element within the set ofn elements with
respect to a certain score. In a subsequent step, the best
combination of two elements is selected by testing this very
element with the remaining elements. Repeating this until
all the n elements have been selected, a (locally) optimal
combination has been identified withNSF evalutions:

NSF =
n∑

i=1

(n − i + 1) =
n(n + 1)

2
. (4)

This, in comparision to (2) reduces the effort to identify an
optimum significantly.

The sequential backward selectionalgorithm behaves sim-
ilarly, but starts with the whole set ofn elements and omits
repeatedly the elements that do not maximize the overall
score. The number of evaluationsNSB is equal to that of the
sequential forward algorithm (eq. (4)).

The algorithm presented in this paper makes use of a
combination of both selection strategies. It requires a so-called
start configurations0 and two parametersnmin and nmax

(with 2 ≤ nmin, nmax ≤ n) that allow to constrain the size

i2,i4

i2,i6 i2,i i4 6,

i i4 6,

i2,i i i4 6 1, ,

i2,i i i4 6 3, ,

i2,i i i4 6 5, ,

(a) Iterationc

i i i4 6 5, ,
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(b) Iterationc + 1

Fig. 1. Deterministic image selection process en detail.a) Starting from a
configuration containing the imagesι2, ι4 and ι6, repeatedly one image is
removed and added. The new set{ι2, ι4, ι6, ι5} yields the smallest projection
error and thus is considered for further use.b) In a subsequent step, again one
image is removed and added repeatedly, yielding the new optimalselection
{ι2, ι6, ι5}.

of the optimal solution. In general, we do not assume any
constraint on the subset and thusnmin = 2 and nmax = n
holds. Again, the score for the selection process is given by
the mean projection errorǫ(s) with respect to the whole input
image setI (eq. (3)).

The start configurations0 = s∗ is determined by the
formerly described, stochastic algorithm (alg. 1). Starting from
such a configurationsc with kc = ||sc||

2
2 images,(n−kc) new

configurations with(kc+1) images are created by adding each
of the remaining imagesI \ Ic. Likewise, kc new configura-
tions of sizenmin ≤ (kc−1) ≤ nmax are set up by repeatedly
removing one image. From thesekc (n − kc) new config-
urations the new optimal configurationsc+1 is determined,
that is again the one with the smallest projection error. The
selection process terminates as soon as the newly determined
configuration equals the current configuration (sc+1 = sc) and
thus the optimal combinationsopt = sc has been identified.

The overall number of evaluations arises from the number
NMCM of evaluations of the Monte Carlo approach and the
amount of evaluationsNDet for the deterministic extension:

N = NMCM + NDet = r + n(n + 1) , (5)

with NDet = NSF + NSB.

V. EXPERIMENTS AND RESULTS

For an evaluation of our approach, we calibrated several
cameras of different resolution and manufacturers. For any
given camera we recordedn = 20 images of a 14-by-10
checkerboard (withm = 117 calibration marks) from different
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Fig. 2. The mean projection error for varying random samples drawn using
the Monte-Carlo (dark) and the enhanced Monte-Carlo method (light). With
increasing numbers of random samples both methods converge towards the
global optimum. However, the enhanced method converges much faster.

directions whereas some of them originated from ill-posed
configurations.

With these images we determined the globally optimal
solution for subsets of fixed size. For this, we performed
an exhaustive search of the search space and identified the
minimum projection errors for the configurations that comprise
of two images, three images and so on up to 20 images.
Starting with configurations of only two images is due to the
Zhang method that requires at least two different views of the
calibration pattern. In contrast to taking the minimum number
of images, considering all images corresponds to the procedure
typically persued in everday calibration work.

In the following, the Monte-Carlo approach with and with-
out deterministic refinement has been applied to the image
set and subsets of varying size were considered. For the
optimizations random choicesr1 = 10, r2 = 25, r3 = 50,
r4 = 100, r5 = 250, r6 = 500 and r7 = 1000 samples have
been considered. In order to get statistically representative
results, the experiment for a given setup was repeated 100
times and the resulting projection errors were arithmetically
averaged.

Figure 2 depicts the projection errors for the identified
optimal solutions whereas Table I shows the computational
effort for the chosen sample numbers achieved on a 3Ghz
Pentium IV workstation machine. Table II also exhibits the
minimal projection error of0.178320 pixel for the globally
optimal solution that has been identified with the exhaustive
search strategy.

Apparently there is a trade-off between processing time
(number of evaluations) and the solution’s quality. Therefore,
we considerr = r5 = 250 as most suitable for everyday
practice.

In addition, Figure 2 shows that the enhanced Monte-
Carlo approach is especially usefull when only a few samples
are drawn (r ≤ 100), because of its fast convergence. In
contrast, using many random selections (r > 100) only a
few deterministic evaluations and optimization iterations are
necessary due to the almost optimal results achieved in the
stochastic step and vice versa (cf. Table I). No matter if the

TABLE I

THE COMPUTATION TIME IN SECONDS FOR BOTH APPROACHES ALONG

WITH THE NUMBER OF EVALUATIONS AS WELL AS THE OPTIMIZATION

ITERATIONS FOR THE DETERMINISTIC ENHANCEMENT FOR DIFFERENT

RANDOM SAMPLESr. THE TABLE DEPICTS THE AVERAGED RESULTS OF

100 EXPERIMENTS.

r tMCM tEnh.MCM N NDet Optimizations
10 1.06 11.32 86.8 76.8 4.0
25 2.40 11.68 87.4 62.4 3.2
50 5.33 13.88 110.5 60.5 3.1
100 10.48 18.70 159.0 59.0 3.0
250 63.36 81.36 300.9 50.9 2.6
500 123.27 140.00 549.0 49 2.5
1000 259.15 272.34 1036.2 36.2 1.8

emphasis is on the stochastic or the deterministic part, the
total number of evaluations that is needed to achieve an almost
optimal result is orders of magnitude lower than the number of
evaluationsNex = 1048555 needed for an exhaustive search.
All the exemplary results are with respect to images with
1024 × 768 pixel that have been aquired with a Matrox CV-
M50 camera.

In addition to the former experiments, we asked different
persons with a background in computer vision to calibrate
the cameras and compared their calibration results with those
that have been obtained with our unconstrained Monte Carlo
method with deterministic refinement. Again, we took the
mean projection error as a metric for the comparison and
repeatedly applied our algorithm. Table II exhibits that the
automatic approach yields better results than calibrations from
image subsets that have been selected by human-made de-
cision and that the optimal solution does not emerge when
considering all the images in the input image set. The number
of images in the last two rows of Table II are referred to
the minimum mean projection error identified within the 100
experiments and counts0.178365 and0.178367 respectively.

Following an intuitive approach - that is choosing all the
acquired images - will likely results in large projection errors
(cf. Table II, rowAll images). Likewise, considering only the
minimum number of images will not yield optimal solutions.
For this reason, the method proposed in this paper is not
a RANSAC method, since such methods draw samples of
minimal size in order to determine the model’s parameters
and rate outliers. In contrast, we vary the size of the samples
and allow non-minimal sample sizes which in turn enables the
algorithm to identify optimal solutions. However, due to its
similarity we claim our approach to be inspired by RANSAC.

VI. D ISCUSSIONAND CONCLUSION

In this paper, we addressed the problem to automatically
determine the optimal subset of the pool of aquired calibration
images yielding the best calibration result. We presented a
stochastic selection scheme in order to identify combina-
tions of input images that yield a small projection error.
Additionally, we proposed a deterministic algorithm for an
improvement of optimal solutions that have been found with
the stochastic approach.

Experiments comparing the algorithms’ performance with
the global optimium as well as with human-made decisions
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TABLE II

COMPARISON OF HUMAN-MADE SELECTIONS WITH THE SUBSETS THAT

HAVE BEEN IDENTIFIED WITH THE PROPOSED APPROACH ANDr = 250

RANDOM SAMPLES. THE MEAN PROJECTION ERRORS IS GIVEN IN PIXEL

AND CALCULATED WITH RESPECT TO THE WHOLE INPUT IMAGE SET. THE

NUMBER OF IMAGES IN THE CHOSEN OPTIMAL SUBSETsopt IS RELATED

TO THE IMAGES THAT WERE USED FOR CALIBRATION.

Method Average # Images Std. Dev.
Expert 1 0.178398 10 ./.
Expert 2 0.179088 8 ./.
Expert 3 0.180657 6 ./.
Expert 4 0.178776 11 ./.
Expert 5 0.178818 18 ./.
Expert 6 0.182151 4 ./.
Expert 7 0.178678 7 ./.
Expert 8 0.178643 9 ./.

All Images 28.2622 20 ./.
Monte Carlo 0.178385 16 0.000010

Enh. Monte Carlo 0.178370 14 0.000014
Global Optimum 0.178320 11 ./.

exhibit that the calibration can be significantly improved by
automated image selection. Furthermore the calibration result
is robust with respect to outlier images, i.e. images that
were taken from ill-posed views. Hence, selecting good image
sets for camera calibration no longer requires long lasting
experience or time-consuming trial and error.
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