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Abstract—This paper deals with a numerical analysis of the 

transient response of composite beams with strain rate dependent 
mechanical properties by use of a finite difference method. The 
equations of motion based on Timoshenko beam theory are derived. 
The geometric nonlinearity effects are taken into account with von 
Kármán large deflection theory. The finite difference method in 
conjunction with Newmark average acceleration method is applied to 
solve the differential equations. A modified progressive damage 
model which accounts for strain rate effects is developed based on 
the material property degradation rules and modified Hashin-type 
failure criteria and added to the finite difference model. The 
components of the model are implemented into a computer code in 
Mathematica 6. Glass/epoxy laminated composite beams with 
constant and strain rate dependent mechanical properties under 
dynamic load are analyzed. Effects of strain rate on dynamic 
response of the beam for various stacking sequences, load and 
boundary conditions are investigated. 

 
Keywords—Composite beam, Finite difference method, 

Progressive damage modeling, Strain rate. 

I. INTRODUCTION 
OMPOSITE materials are being used in many engineering 
applications duo to their high strength-to-weight and 

stiffness-to-weight ratio. Structural components such as 
satellite solar panel, turbine blades and aircraft wings can be 
considered as composite beams. Since these structures are 
frequently subjected to dynamic loadings, the study of 
transient behavior of composite beams is of significant 
importance. Under intense dynamic loads, the structure 
experiences high strain rates and since the mechanical 
properties can vary with strain rate, the transient response of 
the structure will be dependent on strain rate. Moreover, 
geometrical nonlinearity and transverse shear strains are 
important in such dynamic analysis. 
   Soldatos and Eilshakoff [1] presented a third-order shear 
deformation theory for static and dynamic analysis of an 
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orthotropic beam which incorporates the effects of transverse 
shear and normal deformations. Obst and Rakesh [2] studied 
the nonlinear static and transient response of laminated beams 
using a one-dimensional finite element formulation based on 
higher-order displacement model which accounts for 
geometric nonlinearities and a parabolic shear strain 
distribution through the thickness. Marur and Kant [3] used 
higher-order shear-deformable refined theories, based on 
isoparametric elements, for transient dynamic analysis of 
symmetric and un-symmetric sandwich and composite beams. 
Khdeir [4] developed an analytical solution of the classical, 
first- and third-order laminate beam to study the transient 
response of antisymmetric cross-ply laminated beams with 
generalized boundary conditions and for arbitrary loadings. 
Kant, et al. [5] reported an analytical solution to the natural 
frequency analysis of composites and sandwich beams based 
on a higher order refined theory. Gong and Lam [6] 
investigated the transient response of layered composite 
beams subjected to underwater shock involving the effects of 
structural damping and stiffness. None of these literatures 
considers the effects of strain rate.  
   In this paper, a macro-mechanical approach using finite 
difference method and progressive damage modeling 
algorithm which accounts for geometric nonlinearity effects, 
transverse shear strain effects and the effects of strain rate is 
presented. Coupled equations of motion for a laminated 
composite beam based on Timoshenko beam theory are 
reduced to ordinary differential equations in time domain 
using finite difference approximations for displacements. 
Newmark time integration scheme in association with 
Newton-Raphson iteration method are applied to solve the 
system of equations. The variations of mechanical properties 
due to strain rate and failure are taken into account using 
empirical relations and sudden material property degradation 
rules, respectively. A computer code in Mathematica 6 is 
developed to implement the numerical procedures. The effects 
of strain rate on transient response of composite beams with 
various stacking sequences, loadings and boundary conditions 
are presented and discussed.  

II. GOVERNING EQUATUINS 
Fig. 1 shows a laminated composite beam under transverse 

load q. The width b is small compared to the length L and 
transverse load q is assumed to be a function of x only. In 
such condition, the mid-plane deflection w0 and mid-plane 
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displacements in x (u0) and y (v0) directions are function of x, 
and all derivatives with respect to y are zero. 

 
 

 
Fig. 1 Laminated composite beam under transverse loading 

 
In addition, in plane forces are zero and as a result in plane 
displacements (u0,v0) are zero. Based on von Kármán theory 
of plates, nonlinear strain-displacement relations for a 
composite beam can be written as [7]: 
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Where xxε and yyε are strains in x and y directions, respectively. 

xyγ , xzγ and yzγ  represent shear strains and xφ  is the rotation 
of the transverse normal about x axis. Stress-strain relations 
for kth layer are expressed as [7]: 
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Where ( )k

ijQ for i, j=1,2,6 are plane stress reduced stiffness 

coefficients and for i, j=4,5 denote through the thickness shear 
stiffness coefficients. yzε , zxε and xyε represent tensorial shear 

strains which are half of the engineering shear strains yzγ , zxγ  

and 
xyγ ,respectively. ( )k

ijQ  can be obtained as follows [7]: 
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Where ( )k[T]  is transformation matrix, kk Sinθ,nCosθm ==  
and kθ denotes the angle of fibers with respect to laminate 
coordinates for kth layer. ( )k

ijQ  can be expressed in terms of 
engineering constants as follows [7]: 
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Where ( )kE11 , ( )kE22 , ( )kG12 , ( )kG23

and ( )kG13
are longitudinal, transverse, 

in plane shear and out of plane shear stiffness values for kth 
layer, respectively. ( )kυ 12  and ( )kυ 21  represent major and minor 
Poisson’s ratios. The constitutive equations for the laminated 
composite beam with symmetric stacking sequence are given 
by [7]: 
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Where xxM , yyM and xyM are the bending and twisting 
moments per unit length, respectively. xQ  and 

yQ are through 

the thickness shearing force per unit length. sK  denotes the 

shear correction coefficient. The recommended shear 
correction coefficient for a rectangular section is 5/6 [8]. ijA , 

and ijD  are expressed as [7]: 
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  Equations of motion based on Timoshenko beam theory for a 
symmetric laminated composite beam can be obtained by use 
of dynamic version of the principle of virtual displacements in 
conjunction with the constitutive equations and the strain-
displacement relations as [7]: 
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q is the transverse load (per area) and iÎ  denotes the mass 
moments of inertia and which can be defined by: 
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Where h and 0ρ  are the laminate thickness and density, 
respectively. For a rectangular cross section 312/1 bhI yy = . 
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III. METHOD OF SOLUTION 
   Using finite difference approximation for displacement 
field, coupled partial-differential equations, (10), can be 
reduced to a set of ordinary differential equations in time 
domain. Central finite difference equations for first order and 
second order derivatives of an arbitrary variable f  with 
respect to X can be expressed as: 
 

))(2/(1/ ,1,1, jijiji ffXXf −+ −Δ=∂∂                                        (14)                                      
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Where i,jf denotes the value of f  in mesh point (i, j). Finite 
difference expressions for higher order derivatives can easily 
be derived from (14) and (15). Using Central finite difference 
approximations, the differential equations, initial conditions 
and boundary conditions can be converted into finite 
difference expressions at the mesh point (i, j). Fig. 2 shows an 
example finite difference mesh. n represents the number of 
divisions in x directions. 
 

 
Fig. 2 Finite difference mesh 

 
   Assembling these equations for all the mesh points, the 
matrix form of the equations can be written as: 
 

[ ] [ ] { }FKM =Δ+Δ }{}{                                                        (16)                                                     
 
Where [ ]K  and [ ]M  are the stiffness and mass matrices and 

}{Δ  and }{Δ  are displacement and acceleration vectors, 
respectively. The dot superscript denotes a derivative with 
respect to time.The displacement vector is: 
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To reduce this set of ordinary differential equations to 
algebraic equations, we approximate the time derivatives 
through Newmark time integration scheme. Using Newmark 
scheme, the fully discretized equations can be expressed as 
[7]: 
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Equation (18) represents a set of algebraic equations at time tk. 
After applying initial and boundary conditions, these 
equations can be solved using Newton-Raphson iteration 
method. The new velocity vector k}{Δ  and acceleration vector 

k}{Δ  at the end of kth time step can be computed as [7]: 
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Where Δt  is the time step and α  and β  determine the 
stability and accuracy of the scheme. Here we use the 
constant-average acceleration method in which 50.α =  
and 50.β = . 
   In this work, the response of a composite beam (with length 
= L) under dynamic load will be investigated under two 
boundary conditions: 
a) Simply supported at both edges :  at 

00 === wM,Lx xx  
b) Clamped at both edges : 00 === wφ,Lx x  
Initial conditions are: at 00 ===== dw/dtw/dtdφφt xx  

IV. PROGRESSIVE DAMAGE MODELING 
   When failure occurs at a point of the laminate, material 
properties of that point are changed based on material 
property degradation rules. There are many failure criteria for 
laminated composites. In this research the modified 2-D 
Hashin-type failure criteria introduced by Shokrieh [9] are 
utilized. Failure modes and sudden material property 
degradation rules for a strain rate dependent composite are 
expressed as follows: 
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For the fiber compression: 
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For the fiber-matrix shearing: 
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For the matrix tension: 
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For the matrix compression: 

[ ]
[ ]
[ ]
[ ])(,0),(),(),(

)(,)(),(),(),(

0,),(,0),(

,),(),(),(

1
1

)/()/(0

)1(
12

)1(
22

)1(
11

)1(
11

)(
12

)(
22

)(
22

)(
11

)(
11

12
)1(

1212
)1(

111

2112
)(

1212
)(

222
)(

111

2
12

2
2222

++++

++

⎩
⎨
⎧

⇒≥
<

=+<

kk
t

k
c

k
t

k
c

k
c

k
t

k
c

k
t

kk

kkk

c

SYXX

SYYXX

GE

GEE

failed
elastic

SYif

εεεε

εεεεε

υεε

υυεεε

σσσ

                 (29)                 

 
Where 11σ , is the stress of the lamina in fibers direction, 22σ  
is the stress of the lamina in the transverse direction to the 
fibers and 12σ  is the in-plane shear stress of the lamina, tX , 

cX  , tY  , cY  and S are tensile strength of fibers, compressive 
strength of fibers, tensile strength in transverse direction to the 
fibers, compressive strength in the transverse direction to the 
fibers and in plane shear strength, respectively. (k)

11ε , (k)
22ε and 

(k)
12ε  are strain rate in fibers direction, strain rate in the 

transverse direction to the fibers and shear strain rate at kth 
time step, respectively, which can be obtained as: 
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   Shokrieh and Omidi [10-12] have characterized the effect of 
strain rate on mechanical properties of unidirectional 
glass/epoxy using a servo-hydraulic apparatus at varying 
strain rates, ranging from 0.001 s-1-100 s-1. In their study, 
mechanical properties are plotted versus logarithms of strain 
rate and the data are fitted through a regression function 
defined by [10-12]: 
 

( ) γεβαε +=M                                                              (32)                                                               

 
Where, M and ε  are the mechanical property and strain rate, 
respectively.α ,β  and γ are the material constants. Table I 
showsα , β andγ values for various mechanical properties of 
glass/epoxy composites. A computer program based on afore-
stated problem formulation has been developed in 
Mathematica 6. 
 

TABLE I 
MATERIAL CONSTANTS IN REGRESSION FUNCTION FOR MECHANICAL 

PROPERTIES [10-12] 
Stiffness 

(GPa) 
E11 E22 G12 

α 37.243 10.037 4.919 

β 1.139 0.437 -0.9408 

γ 0.276 0.2624 0.0545 

Strength 
(GPa) 

Xt Xc Yt Yc S 

α 788.1 243.5 43.45 109.9 31.32 

β 7.72 316.2 13.09 0.110 15.66 

γ 0.886 0.087 0.131 1.278 0.0863 

ρ= 2100 kg/m3  υ12=0.237 

 

V. NUMERICAL RESULTS  

A. Verification of computer code 
   Firstly, in order to validate the computer code, results are 
compared to those of obtained from ABAQUS finite element 
software. A simply supported glass/epoxy composite beam 
with stacking sequence [0]s under uniform step load with the 
amplitude q=0.4 MPa is considered. From Table I static 
material properties are obtained as ( 0≈ε ): E11=37.243 GPa, 
E22=10.037 GPa, G12=G13= 4.919 GPa. 
The beam dimensions are L=200 mm, h=16 mm and b=20 mm. 
In this verification study, effects of strain rate on material 
properties have not been taken into account and no failure 
occurs under loading. Fig.3 shows the comparison of 
deflection at the center of the beam (W) obtaining from 
computer code and ABAQUS. A good agreement is found in 
Fig. 3 between the two methods. 
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Fig.3 Comparison of center deflection of beam 
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B. The effect of strain rate 
   To investigate the strain rate effects, glass/epoxy composite 
beams under transverse uniform triangular pressure P=Pmax (1-
t/tf) are studied by use of two material models:   

• Material model a: Mechanical properties are constant 
and obtained from static material tests. In here static 
mechanical properties of glass/epoxy composites are 
used. 

• Material model b: Mechanical properties are strain 
rate dependent and calculated from (32).  

   Variation of longitudinal strain rate ( 11ε ) with time at the 
center of a [0]s clamped beam with dimensions L=200 mm, 
b=20 mm and h=16 mm under triangular load with Pmax=10 
MPa and tf=1.4 ms is shown in Fig. 4. It can be observed from 
this figure that the composite beam is exposed to strain rate 
values higher than 100 s-1. However, as seen before, (32) and 
material constants given in Table I are valid for strain rates 
ranging from 0.001 s-1-100 s-1. Karim [13] and Wang, et al. 
[14] have considered polymer composites by use of a visco-
elastic model consisting of an elastic element connected in 
parallel with a generalized Maxwell model. The stress-strain 
relationship for the visco-elastic model under constant strain 
rate ijε can be expressed as [13]: 
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Fig .4 Variation of longitudinal strain rate with time at the center of 

the clamped beam   
 
Where ijE is quasi-static stiffness, (ij)

kE and (ij)
kη  are kth elastic 

element constant and kth damping element constant, 
respectively. Nonlinear regression analysis is used to find 
visco-elastic model parameters by fitting (33) to data obtained 
from stiffness and strength empirical relations at strain rates 
ranging from 0.001 s-1-100 s-1. The visco-elastic model 
parameters for n=3 in longitudinal (i=j=1) and transverse 
(i=j=2) directions are given in Table II. From Table I it is 
obvious that shear stiffness decreases with strain rate ( 0<β ) 
and as a result calculated visco-elastic parameters in shear 
direction are negative. This implies that the visco-elastic 
model can not be used to describe shear behavior for the 
present composite material.  
 
 
 
 

  TABLE II 
VISCO-ELASTIC MODEL PARAMETERS IN LONGITUDINAL AND TRANSVERSE 

DIRECTIONS 
Longitudinal direction 

E1
(11)  E2

(11)  E3
(11)  η1

(11)  η2
(11)  η3

(11)  

0.384824 2.3938 0.62314 0.1567 0.00035 0.004476 
Transverse direction 

E1
(22)  E2

(22)  E3
(22)  η1

(22)  η2
(22)   η3

(22)   

0.155086 0.0068 0.835001 1.3E-5 0.22935 0.000175 
 
    Prediction of longitudinal and transverse stiffness and 
strength values using the visco-elastic model and empirical 
equations at strain rate 200 s-1 are given in Table III. As seen 
in Table III the material properties calculated using the visco-
elastic model are almost in agreement with those calculated 
using empirical relations. This indicates that empirical 
equations can be used to estimate longitudinal and transverse 
stiffness and strength values at strain rates higher than        
100s-1. The variation of shear stiffness and strength with 
logarithm of strain rate is approximately linear. According to 
Okoli and Smith [15], this linear relationship implies that 
extrapolation of low strain rate data to region of high strain 
rate data is possible. Moreover, the logarithm of 200 (=2.3) is 
close to that of 100. Therefore, in this research shear stiffness 
and strength empirical equations for strain rates higher that 
100 s-1 (up to 200 s-1) are used. 
   Results for the deflection of the center of a 400 mm×20 
mm×16 mm simply supported and clamped composite beam 
with [0]s stacking sequence subjected to triangular load with 
Pmax=10 MPa and tf=1.4 ms, are presented for material model 
a and material model b in Figs. 5 and 6,respectively.   
 

 
TABLE III 

COMPARISON OF STRENGTHS AND STIFFNESS VALUES OBTAINED USING VISCO-
ELASTIC MODEL AND EMPIRICAL EQUATION AT 200 s-1 

Stiffness(GPa) Visco-elastic 

model 

Empirical equation 

E11 40.6 42.16 

E22 11.8 11.14 

Strength(MPa) Visco-elastic 

model 

Empirical equation 

Xt 1197 1632 

Xc 746.2 746 

Yt 63.27 69.7 

Yc 294 206 

 
As shown in these figures, for both boundary conditions, the 
maximum center deflection obtained from the material model 
a is larger than that of obtained from the material model b. 
This is due to the fact that, the magnitudes of stiffness in 
material model b increase by increasing the strain rate. 
Therefore, the material model a which has constant 
mechanical properties behaves softer than the material model 
b. 
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Fig.5 Comparison of center deflection for simply supported beam 

(Under triangular load: Pmax=10MPa,tf=1.4ms) 
Clamped beam
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Fig.6 Comparison of center deflection for clamped beam  

(Under triangular load: Pmax=10MPa,tf=1.4ms) 
 
   The effect of stacking sequence are investigated by material 
models a and b for lamination scheme [θ/-θ]s in which θ=0˚, 
15˚, 30˚, 45˚, 60˚, 75˚and 90˚. Fig.7 depicts the time history of 
center deflection for 400 mm×20 mm×16 mm clamped beams 
which are exposed to triangular load with Pmax=0.8 MPa and 
tf=1.4 ms using material models a and b for θ=0˚, 45˚and 90˚. 
The variation of maximum deflection (Wmax ) with fiber angle 
(θ) is illustrated in Fig. 8. As shown in Figs. 7 and 8, the 
maximum center deflection increases with fiber orientation 
angle and reaches its maximum value at θ=90˚. It can be seen 
that the trends for material model a and b are the same. It is 
also clear that for all stacking sequences the maximum center 
deflection obtained using the material model a is larger than 
that of the material model b. 
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Fig.7 Center deflection history of clamped beams with lamination 

scheme [θ/-θ]s for θ=0˚,45˚,90˚ 
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Fig. 8 Maximum center deflection for clamped beam  

(Under triangular load: Pmax=0.8MPa, tf=1.4ms) 
 

   In order to study the effect of peak pressure (Pmax),a 200 
mm×20 mm×16 mm clamped glass/epoxy composite beam 
with the stacking sequence [0]s subjected to triangular load 
with  Pmax=4,6,8,10 and 12 MPa and tf=1.4 ms is analyzed. 
   Fig. 9 represents time history of center deflection of the 
beam under peak loads with Pmax=2 and 12 Mpa. As seen in 
Fig. 9, the difference between results obtaining from material 
model a and b is greater for Pmax=12 MPa. The variation of 
maximum deflection (Wmax) with peak load (Pmax) is shown in 
Fig. 10.  Form this figure, it is obvious that the maximum 
center deflection as well as the difference between results 
obtained using material model a and b increase with the 
magnitude of the peak pressure. This is due to the fact that the 
strain rate magnitude increases with an increase in Pmax and as 
a result, the difference between rate dependent mechanical 
properties of the material model b and constant mechanical 
properties of material model a increases. 
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Fig. 9 History of center deflection for clamped beam  
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Fig. 10 Variation of maximum deflection with peak pressure  

VI. CONCLUSION 
   In the present study, a finite difference model which 
accounts for geometric nonlinearity, shear transverse strain is 
presented, based on Timoshenko beam theory. Sudden 
material degradation rules, Hashin-type failure criteria and 
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empirical relations which present longitudinal, transverse and 
shear magnitudes of strength and stiffness in terms of strain 
rate are used to develop a strain rate dependent progressive 
damage model. Finite difference model in association with the 
progressive damage model are programmed in a Mathematica 
computer code. In order to investigate the strain rate effects on 
the dynamic response of the composite, a clamped glass/epoxy 
composite beam subjected to a dynamic load is considered. 
Results for the material model a , in which the mechanical 
properties are constant, and the material model b which has 
strain rate dependent mechanical properties, are compared for 
various stacking sequences and load magnitudes. The results 
obtained from the present research are summarized as follows: 

• Longitudinal and transverse behaviors of a 
glass/epoxy lamina (which is used in the present 
study) can be described using a visco-elastic model, 
consisting of an elastic element connected in parallel 
with a generalized Maxwell model, but this model 
can not be used for glass/epoxy composites under 
shear loading. 

• The maximum deflection obtained at the center of the 
beam, using the material model a (with constant 
material properties) is larger than that obtained using 
the material model b (with strain rate dependent 
material properties). 

• The effect of stacking sequence on the maximum 
deflection of the center of the composite beam is the 
same for both material models a and b. the maximum 
center deflection for a [θ/-θ]s stacking sequence is 
obtained when θ is equal to 90˚. 

• The maximum deflection and the difference between 
results obtained using material models a and b 
increase by increasing the magnitude of the load. 
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