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On the Approximate Solution of a
Nonlinear Singular Integral Equation
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Abstract—In this study, the existence and uniqueness of the
solution of a nonlinear singular integral equation that is defined on a
region in the complex plane is proven and a method is given for
finding the solution.
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[. INTRODUCTION

S it is known, the application area of nonlinear singular

integral equation is so extensive such as the theories of
elasticity, viscoelasticity, thermo elasticity, hydrodynamics,
fluid mechanics and mathematical physics and many other
fields [1]-[6].

Furthermore, the solution of the seismic wave equation
that has a great importance in elastodynamics is investigated
by reducing it to the solution of nonlinear singular integral
equation by using Hilbert transformation [7].

All of these studies contribute to update of investigations
about the solution of the nonlinear singular integral equation
by using approximate and constructive methods.

In this study, the approximate solution of nonlinear singular
integral equations that is defined on a bounded region in
complex plane is discussed.

It is known that the investigation of the problems of the
Dirichlet boundary-value problems for many nonlinear
differential equation systems which have partial derivatives

and defined on a planar region G < C can be reduced to the
investigation of the problem of a nonlinear singular integral
equation which is in the following form [8], [9], [10]-[14]

@(z) = 0
AF(z,0(2), T, f (. 0())(2), 1, g(., p())(2)).

Here, let
D, :{(z,go):ze (_?=6GUCO},¢)E(C}

=G xC
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OG is the boundary of the region G, G is the set of interior
points of G and

D={(z,gz),t,s):zea,(p,t,se(C}zax(C3
given, f,g:Dy > C and F:D — C are the known
functions, AeR is any
he H,(G)0<a<]1) and for z=x+iy,{ =E+in

followings are the known Vekua integral operators [15].

Teh()z) = (-1 2).[[ W) S —2)" dgdn,

ar¢ as

scalar parameter,

M h()z) = (=1 ) [[ )¢ = =) dédn

In this study, by taking base, a more useful modified variant
of Schauder and Banach fixed point principles, the existence
and uniqueness of the solution of the Equation (1) is proven

with more weak conditions on the functions f, g and F.

Furthermore, iteration is given for the approximate solution
of the Equation (1) and it is shown that the iteration is
converging to the real solution.

II. BASIC ASSUMPTIONS AND AUXILIARY RESULTS

Further, throughout the study, if not the opposite said we
take the set G < C as bounded and simple connected region.

o

For G is to be the set of interior points of the region G and

0G is to be the boundary of G let G = 0GU G .

If, for every z,,z, € G thereexist H >0 and o € (0,1]
numbers such that

|(P(Z1)_ ¢(Zz)| < H'|Zl —Z,
then it is said that the function (p:@ — C satisfies the

|0!

Holder condition on the set G with exponent ¢« . We will
show the set of all functions that satisfies Holder condition on

the set G with exponent o with . (G).
For peH, (G) and0<a <1, the vector space
(@)

|a ) is a Banach space with the norm
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lel, =lel,. ., =lel, + H(p.a:G).

Here,

”90”00 = max{lgo(z)| iz e 5},
H(p,a;G) = sup loz) -0z}

are as given.
ForL,(G)= {(o :G - C: [[lp(¢)) dédn < +oo},
G

1 < p, the vector space (Lp (G);

) is a Banach space
P

with the following norm,

ol =Dl = [ st |

Further, throughout the study we take
D, = {(z,gp):z € (_?,goe(C}z G xCand
D= {(z,(p,t,s) zeG, 0,15 € (C}z G xC®. Besides,
for every zZ,,Z, € G and
(z,,9,)eD,, (z,,0,,t,,5,)€D, for k=12 we
suppose that the number « €(0,1) and the positive

constants m,,M,,N,,N,,l,,0,,l;,], are exist such that

following inequalities be satisfied

|f(21a(01)_f(22a¢2)| <

» 2
m1|Zl _Zz| +m2|(p1 _(02|
|g(21,¢1)—g(22,(02)|S ®
n1|21 _Zz|a +n2|¢1 _¢2|

|F(Zl,¢)l,ll,S1)—F(Zz,¢2,t2,S2)|S
Zl|Zl _Zz|a +lz|¢’1 _¢2|+ “4)

Lle, =1, + 1]s, = s,

We will denote the set of functions that satisfy the
conditions 2), 3) and 4) with
H, (m,m,;D,),H,  (n,n,;D,) and
Ha’lq]’l(ll,lz,lpl“;D) respectively.

Now, let us give some supplementary lemmas for the
theorems about the existence and uniqueness of the solution of
the Equation (1).

Lemma 2.1. If peH, (G), ac(0]) then for every
p>1and € €(0,d) thefollowing inequality is held

el <22 el + ™" el . )

where d = supﬂz1 —zz| 1z,,2Z, € G}.

Lemma 2.2. For ¢ € H, (G), aec(0)]) and p>1 the
following inequality is held

2

i
lol, <M p)lezw ez ©

Here, M (at, p) = max{M(a, p),M,(a, p)},

-1

M, (a, p) = 2.(n(a, p))* +(r.(n(a, p))*) ",
M, (a, p)=2X4).&K4-1)" (n(a, p))*,

—P

n(a, p) = (a.pXl)* "

Lemma 2.3.

ForDyy = {(z,0) € D, :2€ G || < RLR >0,
B,(0;R) ={pe H,(G):|¢|< R} a e(0,])

andp € B,(0;R), f,g: Dy, = Clet

/() = f(z,0(2)), g,(2) = g(z,9(2)), z € G.Then

for the functions fl » g, - G —>C the following inequalities

are true
|f,(z)| <m,+m,.R, zeG,
|f1(Z1)_f1(Zz)| <(m, +m2'R)'|Zl I

z,,z, €Q,

)

|g1(z)| <n,+n,.R, zeG,
“®

|g1 (Zl)_gz(zz)| <(n +n2'R)'|Zl —Z,
z,,z, €G.
Here,
m, = max{f(z,0):z€ G},
n, = max{|g(z,0)| :zeG}.

The proof of the Lemma 2.3 is obvious from the Inequalities
(2), (3) and the assumptions of the lemma.

Corollary 2.1. If the assumptions of the Lemma 2.3 are
satisfied then for, f,,g, € H,(G), a € (0,1) we have
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||f1||a <m,+m, +2Rm,,

||g1||a <n,+n,+2Rn,.

Now, for f € Ha’l(ml,mz;DO), ge Ha,l(nl’HZ;DO)
andp € H,(G), a € (0,1) let us define the functions
£1,8,:G — C as given below
L) =T5 (o)),
g(2)=Ig(.,p())2).
For the __ bounded operators
T, M, :H,(G)—> H,(G), ae(0]) It us define

the following norms:

7], =swlltool, 20 < H,@). o, <1}

(10)

(1)
e, =sup{Miee], <o e 1, Jo], <1}
(12)
[117, [14].
Lemma 2.4. If
feH, (m,m,;D,y), geH, (n,n,;D,) and
peB, (0;R), ae(0l) then in this case

/71,§1 EHa(E) and we have

7] <z l&l,<z.. 0
Here,

L =(my+m + 2m2.R).||TG||a,
L,=(n,+n, + 2n2.R).||HG||a .

The proof of the Lemma 2.4 is obvious from the definitions of

the functions f,,g, : G — C and corollary 2.1.
Lemma 2.5. Let

feH, (m,my;Dy), geH, (n,n,;D,),
FeH,, (.l,0,1,;D;) and D, =
{(z,(p,t,s) eD,:ze G, g0| < R,|t| <R,
for the function F : G — C that is defined as

F (@) = Flz.0(2).(T; o /,)(2). (g © /,)(2)),
ze€G andforpe B, (0;R), a € (0,1)

we have

S| < R}. Then

|F2)|<ly+1,.R+1,.L, +1,.L,, zeG,
| F(z)- F(z,)| < +1,.R+1,.L +1,.L,)x

o _
, 2,2, €G.

|Zl 2

Here, I, =|F(.,0,0,0)| .

The proof of the Lemma 2.5 is obvious from the definition of
the functionf :G — C, the Inequality (13) and from the
assumption of lemma.

Corollary 2.2. If the assumptions of the Lemma 2.5 are
satisfied then for F € H (G we have

|F|, < L=2{max{y,[,)+1,R+1,.L +1,.L,}.

Corollary 2.3. If the assumptions of the Lemma 2.5 are
satisfied then the operator A that is defined with

A(p)(2) =

AF(z,0(2),(Tg o f)(2), (M 0 g,)(2),2€ G
(14)
AL).

transforms the sphere B, (0; R) to the sphere B, (0;

Corollary 2.4. If the assumptions of the Lemma 2.5 are
satisfied and if |1|L < R then the operator A that is defined

with 14) transforms the sphere B, (0; R) to itself.

Lemma 2.6. The sphere B, (0;R), a € (0,1)is a compact
set of the space (H ,, (G); L)

Proof.  From the definition of the sphere B, (0;R),
ae(0,1) for @< B,(0;R) we have "(p”oo <R,
therefore, it is clear that the sphere B, (0;R)is uniform
bounded in the space (/, (G);

" ). Furthermore, for every

&> 0 ifwetake & = (&/R)"“ then forevery z,,z, € G
and @€ B,(0;R) when |Z1 _Zz| <O we have

|q0(zl) -¢(z, )| < R.|Z1 - 22|a < &. From here we can see

that the elements of the sphere B (0;R) are continuous at
same order. Thus, as required by the Arzela-Ascoli theorem
about compactness the sphere B, (0; R) is a compact set of

the space (H , G B
Corollary 2.5. The sphere B,(0;R), a<€(0,]) is a
complete subspace of the space (H , (5), A ).
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Now, let us define the following two transformations, which

are in the space (H , (G). )
Forg,p € H,(G),a €(0,]), p>1 let
4.0.5)=lo-7l.. d,0.5) o], . Then it is
easy to show that the transformations

d, H,(G)—>[0+0), d,:H,(G)—>[040) are
both defines a metric on the spacefd, (G).ae(0]),

consequently, it can be easily seen that (H, (5 );
(H, (G); ”"p ) are metric spaces.

OO) and

Lemma 2.7.. The convergence is equivalent for the metrics
d, and d  inthe subspace B, (0;R), a € (0,1), p > 1.
Proof of Lemma 2.7 is direct result of (6) and
i/ p

d, (@00 <[7@12°]" d (0, 0,)
inequalities, for all @,, @, € Ba (O;R), n=12,...
a<(0]).

Now, for bounded operators
T, 11, :L,(G)—> L,(G), p>1letus define the
following norms
7], 0, = suplToel,, <l <1
[T76l,, @, =supdlTTagl, el <1

[117, [14].

Lemma 2.8. Let
fEHa,l(mlvmz;DOR)a gEHa,l(nl7n2;D0R)
and F e H ,,  (l,0,,15,1;;Dp), a(0]), p>1.1In

this case, for @,p € B_(0; R) the operator A that is defined
with the Equality (14) satisfies the following inequality

d,(A(p), A@)) <|AM,(p)d . (9.0). (15

Here,

M3 (p) = (lz +m213'"TG”LP(5) + nzl4'"HG”Lp(E) )X

(m(G))"".
Proof. For zeG and @,p € B,(0;R) from the

assumption of the lemma and definition of the operator A we

have
|A(p)(2) — A@)(2)| =[]
F(z,0(2), Ty f (o p())2), T3 g p())(2))
F(z,0(2). T, f (@), 5 2( §())(z))

Llp(z) - @(2)| +
<A L|T (F o) = FL@ONE)| + |
LI (g(.00) - (. @(N)Z)

As for this, from the assumptions on the functions
f,gand F and in accordance with Minkowski inequality
we have,

[[la@)2) - 4@ dxdyJ <4/

1/
P P

Lp(2) - 3(2)| +
[[| LI (f o) = FEONE)|+ | dvdy
LI (g o) - g P)E)

Lle-l, +
<A L{T6l, & 17 o) = FEON, +
L], & JeC o) - g3,

y |ﬂ| 12 + m213 '"TG”L,,(E) + ” ~||
- P—@
l’lzl4 .||HG||LP(6) P
and therefore we obtain

Up
[store-aoxora)

G
Al +mt g7, o)+ mat ], o o7,

From this inequality, it is seen that the Inequality (15) is true.
With this, the lemma is proved.

Lemma 2.9. If the assumptions of the Lemma 2.8 are satisfied
and |/1|.L <R. Then the operator

A:B, (0;R) > B,(0;R), ae(0,]) is a continuous
operator for the metric d .

Proof. Let @,,9, € B, (0;R), n=12,. aec(0,1l)

and ll_)n}o d (¢,,9,)=0. We want to show that

limd_(A(@,), A(p,)) =0. From the Inequality (6) we

can write

|4(p,) - Alpy)|, <
M (a, p)|A(p,) - A(p,)| 2 x.

2
|4(p,) — A(@y)||z+=
Thus, due to the Inequality (15) we will have
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|4(e,) - A(p))], <M (a, p)2R) > x

ap ap

(AM (P (A (@, )

From this inequality, it can easily be seen that if

limd_(¢,,9,) =0 then
limd,, (A(p, ), 4(9,)) = 0.

III. MAIN RESULTS

Now, we can give the theorem about the existence of the
solution of the Equation (1).

Theorem 3.1. If

fe Ha,] (ml’mZ;DOR)7 g € Ha,l (nlﬂnZ;DOR)and
FeH,,  (.,,,1,0;D,), ac(0]l) and |AL<R
then the nonlinear singular integral equation (1) has at least
one solution in the sphere B (0; R) .

Proof. If |/1|L < R then the operator A which is defined

with the Formula (14)
set B, (0;R)to itself in the Banach space

transforms the convex, closed and
compact

(H, (5),||||a), a €(0,1). Thus, the operator A is a

compact operator in the space /1, ((_; ). In addition to this,
since the operator A is also continuous on the
set B, (0; R) , it is completely continuous operator. In that
case, due to the Schauder fixed-point principle the operator
A has a fixed point in the set B, (0; R) . Consequently, the
Equation 0] has a
space [, (G),ae(0,]).

With this, the theorem is proved.

solution in the

Now, we will investigate the uniqueness of the solution
of the Equation (1) and the problem that how can we find
the approximate solution. For this, we will use a more
useful modified version of the Banach fixed-point principle
for the uniqueness of the solution of operator equations
[16].

Theorem 3.2. Suppose the following assumptions are
satisfied:

i (X, pl) is a compact metric space;

ii. In the space X, every sequence that is
convergent for the metric p, is also
convergent for a second metric O, that is
defined on X;

iii. The operator A: X — X is a contraction

mapping for the metric p,, that is, for

every X,y € X there exist a number

q €1[0,1) such that
Py (Ax, Ay) < q.p,(x, ).

In this case, the operator equation X = AX has only
unique solution X, € X and for x, € X to be any initial
approximation, the velocity of the convergence of the
sequence (X,) to the solution X, is determined by the
following inequality
-1

Py (x,,x)<q" (1=q)".p,(x,,%,) -
Here, the terms of the sequence are defined by X, =
Ax n=12,....

On the basis of this theorem and preceding information,
we can give the following theorem about the uniqueness of
the solution of the Equation (1) and also about finding the
solution.

n—12

Theorem 3.3. If
feH, (m,my;;Dy), g€H, (n,n,;D),

FeH, (,,,51,;Dy), ae(0l),

AL < R 1=[A} (0, + mol |To|, &+

n214'”HG"L (5) <1, p>1 then the nonlinear singular
P

integral equation (1) has only unique solution

¢. € B,(0;R) and for ¢, € B,(0;R)to be any initial
approximation, this solution can be found as a limit of the
sequence ((Dn ), n=12,... whose terms are defined as

below

=AF
?,(2) (HGg(., @, ()2)

zZ€E 5, n=12,...

Z, (Dn—l (Z)’ TGf('9 (pn—l ())(Z)aj

(16)
Furthermore, for the velocity of the convergence the following
evaluation is right,

n -1
dp((pn’¢*) < l (1 _1) 'dp(¢l’¢0)’ n= 152,“'-
17
Proof. In order to prove the first part of the theorem it is

sufficient to show that the assumptions i-iii of the Theorem 3.2
is satisfied. In accordance with Lemma 2.6 and Corollary 2.5

for @,p € B,(0;R) and dp((p,(ﬁ) =,
||(p - 5”00 , (Ba (O;R);dw) is a compact metric space.
Therefore, for X = B_(0;R) and p, =d_, the assumption
i. of the Theorem 3.2 is satisfied.

If we take p, =d,,p>1, from the Lemma 2.7 it is

obvious that the assumption ii. of the Theorem 3.2 is satisfied.
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Now, let us show that when / <1 then the operator A is a
contraction transformation with respect to the d » metric and

so we have shown that the assumption iii. of the Theorem 3.2
is satisfied.

For any@,,@, € B (0;R), same as the proof of the
Lemma 2.8 the following inequality can be proven

"A((Dl) - A(p, )"p < Z-"("] -9, ”p .

Here, I = |0 + moly T, +mod T,

L,(G) LP(E)‘

Therefore, for @,,@, € B, (0;R) we can write

d,(A(@), Ap,) <1d (9,0,). (18)

Thus, when / <1 it can be seen from the Inequality (18) that
the operator 4 is a contraction mapping with respect to the

d, metric thatis defined on the B, (0;R) .

Thus, from the assumptions of the theorem; i. B, (0; R) is
a compact metric space; ii. In the space B, (0;R), every
sequence that is convergent for the metric d_ is also
convergent for the metric d, that is defined on B, (0;R)
A:B,(0;R) —> B,(0;R) is a contraction
mapping with respect to the norm d , .

Therefore, because of the Theorem 3.2 the Equation (1) has
only unique solution ¢, € B, (0; R).

and iil.

Now, let us show that for ¢, € B, (0;R) to be an initial

approximation point, this solution is the limit of the sequence

(p,), n=12,...

0, (2)=A(p, (2)), zeG, n=12,....
For every n =1,2,... from the Inequality (18) we have

d,(@,1,0,)=d,(Ap,), A@,,)) <
Ld,(@,,.)

whose terms are defined by (16) or by

so from here we can write

dp (¢n+1 ﬂwn) < ldp (¢n ’¢)n—1)

and from this inequality , we will have

d,(@,..0,)<1"d, (¢,.9,).

So, for any natural numbers m and n we can write

d, (@0, <1"d,(9,,0,)

Furthermore, because

d,(0,,0) <" +1"? + . +1+1)d (¢, 0,)

we will have,

d, (@ P,) S (1—1'").(1—l)’l.l”.dp(q)l,¢0).(19)

From the Inequality (19), it can be seen that the sequence
(p,), n=12,..
metricd , . Therefore, since (Ba (O;R);dp) is a complete

is a Cauchy sequence with respect to the

metric space there exist the limit ¢, € B, (0;R) such that
limg, = @. or limd (¢,,p.)=0.
Fan)O:n (18), for evenr;iatural number 7 since
d, (@, A@)=d ,(Ap,), A(p.)) <
ld,(¢,,9.),

we have
limd, (p,.,, A(p.)) =0,

and consequently, lim¢@, ., = A(¢.) in other words
H—>0

@. = A(p.). With this, it can be seen that the operator
@o(z) = A(p(z)), ze G, consequently, the

solution of the Equation (1) is the limit of the sequence whose
terms are defined by

0, (2)=A(p, ,(2), z€ G, n=12,... . Furthermore, as

equation

because lim¢@,,, (z) =@.(z) and lim/" =0 from the
m—>o0 m—o
Inequality (19) the convergence velocity of the sequence
((on (Z)), ze G, n=12,... to the solution @,.(z) is given
by the Inequality (17).
From Theorem 3.3 and Lemma 2.7 we will have the
following result.

Corollary 3.1. In the space B, (0;R), a €(0,1) the

sequence ((Dn (Z)), zZ e (_;, n= 1,2,...whose terms are
defined by (16) (or defined by

@, (2)=A(p, (2), z € G, n=1.2,...) also converges
to the unique solution of the Equation (1) with respect to the
metricd .
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