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Stability analysis of linear switched systems with
mixed delays

Xiuyong Ding, Lan Shu

Abstract—This paper addresses the stability of the switched sys-
tems with discrete and distributed time delays. By applying Lyapunov
functional and function method, we show that, if the norm of
system matrices Bi is small enough, the asymptotic stability is
always achieved. Finally, a example is provided to verify technically
feasibility and operability of the developed results.
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I. INTRODUCTION

SWITCHED systems are a special class of hybrid systems
which contain both continuous dynamics and discrete

dynamics. In recent years, switched systems have been studied
with growing interest and activity in many fields of science
ranging from economics to electrical and mechanical engineer-
ing [1], [2].

Stability analysis is the most important topic for the study
of switched systems (see [3]-[30] and references therein). In
switched systems, there are three cases: a switching system
consisted of stable subsystems, of unstable subsystems, and
of both stable and unstable subsystems. Here we can observe
that consisting of stable subsystems does not necessarily
guarantee stability of switching system. On the other hand, as
mentioned earlier a switching system composed with unstable
subsystems can be stabilized by appropriate switching rule
[20]. In the first case, a switched system consisting stable
subsystems, one natural approach is to construct multiple
Lyapunov functions. Branicky [21], [22] provided conditions
for globally asymptotically stability using multiple Lyapunov
functions in this case. In the second case, a switched system
consisting of unstable subsystems, it will be not possible to
construct a Lyapunov function for each subsystem, hence, the
other option is to use single Lyapunov functions. The question
is how to construct it among unstable subsystems. Wicks and
Peleties [20], [23] considered a m−switched system consisting
of m linear autonomous unstable systems. They developed a
control law using a Lyapunov function having a piecewise con-
tinuous derivative. Also Schaft and Schumacher [24] provided
a new switching rule-The Minimum Rule by constructed a
stable linear convex combination of the unstable subsystems.
By this method the asymptotic stability is achieved without
chattering or sliding motion. In the third case, a switched
system including both stable and unstable subsystems, the key
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idea is the dwell time. Hespanha and Morse [25], [26] provided
a switching rule called the Average Dwell time approach.
Also Zhai et al. [27] extended this approach, they showed
that if the average dwell time is chosen large enough and the
total activation time of unstable subsystems is relatively small
compared to that of stable subsystems, the exponential stability
of a desired degree is guaranteed.

In some switched systems, the phenomenon of time delays
is rather widespread. Hence, establishing stability conditions
for those systems would be beneficial. For example, stability
analysis of time delay systems are reported in [28], [29],
[30] and the references cited therein. There results are ob-
tained based on the Razumikhin method and the Lyapunov-
Krasovskii method. More specifically, the Razumikhin method
is used in [28] to study robust stability and robust stabilization
for linear systems involving a time delay and a norm bounded
parametric uncertainty. In [29], some results on the robust
performance of linear delayed systems are obtained based on
the Lyapunov-Krasovskii functional method.

In this paper, we investigate delay-dependent stability for a
class of linear switched systems with discrete and distributed
time delays by means of multiple and single Lyapunov func-
tional and multiple and single Lyapunov function methods.
The rest of the paper is organized as follows: Section II
provides mathematical background necessary to state the main
results of the note. Section III considers the case where the
subsystem matrices Ai are stable and presents some stan-
dard delay differential equations results in terms of multiple
Lyapunov functional and function. In section IV, for case
where the subsystem matrices Ai are unstable, we establish
stability conditions by means of single Lyapunov functional
and function. A numerical example is presented in section V.
Finally, concluding remarks are presented in section VI.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider the following linear switched system with discrete
and distributed time delays

ẋ (t) = Aσ(t)x (t)+Bσ(t)x (t − τ)+Cσ(t)

∫ t

t−h

x (s) ds, (1)

where x (t) ∈ Rn is the state, h, τ > 0 are the discrete and
distribute delays, respectively. Aσ(t), Bσ(t), Cσ(t) ∈ Rn×n,
and σ (t) : [0,∞) → M = {1, 2, · · · , m} is the switching
function. Define xt (θ) = x (t + θ) ∈ C = C ([−τ∗, 0] , Rn)
and ‖xt‖τ∗ = sup−τ∗≤θ≤0 ‖xt(θ)‖. ‖·‖ is Euclidean norm,
−τ∗ ≤ θ ≤ 0, τ∗ = max (h, τ).
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Moreover, the ith subsystem of (1) can be written as

ẋ (t) = Aix (t) + Bix (t − τ) + Ci

∫ t

t−h

x (s) ds. (2)

For our results, we collect the following technical results.
In [31], for the linear switched system with discrete delays

ẋ (t) = Aix (t) + Bix (t − τ) (3)

with Ai, Bi ∈ Rn×n, i ∈ M , and τ > 0 is constant discrete
delays, the author established the following results.

Theorem 1: Supposed that each of the subsystems of (3)
is stable. If there exists a Lyapunov functional Vi(xt), i =
1, 2, · · · , m satisfying

(i) There exist continuous and increasing functions α (·)
and β (·), such that α (0) = β (0) = 0 and

α (‖x (t)‖) ≤ Vi(xt) ≤ β (‖xt‖τ∗) .

(ii) For the ith , there is a continuous and increasing
functionψi (·), such that ψi (0) = 0,∀s > 0 with
ψi (s) > 0 and

V̇i (xt) ≤ −ψi (‖x(t)‖) .

(iii) There exists a constant μ > 0, such that for all xt ∈
C ([−τ∗, 0] , Rn),

Vi (xt) ≤ μVj (xt) , i �= j

(iv) For any pair of consecutive switching times tp, tq of the
ith subsystem, let tp < tq and the ith mode is active at
tp and tq, respectively. If there is a constant 0 < ξi < 1
such that

Vi

(
xtq

) ≤ (1 − ξi) Vi

(
xtp

)
.

Then the trivial solution of (3) is uniformly asymptotically
stable for any switching rule.

Theorem 2: Supposed that each of the subsystems of (3)
is stable. If there exists a Lyapunov function Vi(x(t)), i =
1, 2, · · · , m satisfying

(i) There exist continuous and increasing functions α (·)
and β (·), such that α (0) = β (0) = 0 and

α (‖x (t)‖) ≤ Vi (x (t)) ≤ β (‖x (t)‖) .

(ii) For each i , there are continuous and increasing functions
ψi (·) and pi (·), ψi (0) = 0, ψi (s) > 0, s > 0,
pi (s) > s, s > 0 and

V̇i (x (t)) ≤ −ψi (‖x(t)‖)
with Vi (x (t + θ)) < piVi (x (t)) , θ ∈ [−τ, 0]

(iii) There is μ > 0 such that, for x ∈ Rn

Vi (x) ≤ μVj (x) , i �= j.

(iv) For any pair of consecutive switching times tp, tq of the
ith subsystem, let tp < tq and the ith mode is active at
tp and tq, respectively. If there is a constant 0 < ξi < 1
such that

V̄i (tq) ≤ (1 − ξi) V̄i (tp)

with V̄i (t) = sup
−τ∗≤θ≤0

Vi (x (t + θ)).

Then the trivial solution of (3) is uniformly asymptotically
stable for any switching rule.

In section III, for the case of stable Ai of system (2), we
are devoted to extend the above standard delay differential
equations results to the systems with mixed delays by means
of single Lyapunov functional and function methods. On the
other hand, when all Ai are unstable, the standard delay
differential equations results will not be derived. Section
IV will present some sufficient conditions guaranteeing the
asymptotic stability of system (1). To this end, we need the
following classical results [32].

Consider the following nonlinear system

ẋ = f (t, xt) , (4)

where f (t, xt) is continuous.
Lemma 1: For the system (4), let f : R × C 	→ Rn

take R×(bounded sets of C) into bounded sets of Rn,
μ, ν, ω : R+ 	→ R+ are continuous nondecreasing functions,
μ (s) , ν (s) , ω (s) > 0 for s > 0, and μ (0) = ν (0) = 0. If
there are a continuous function Lyapunov functional V (xt) :
R × C 	→ R such that

(i) μ (‖x (t)‖) ≤ V (t, xt) ≤ ν (‖xt‖τ∗) .
(ii) V̇i (t, xt) ≤ −ω (‖x(t)‖) .

Then the trivial solution of (4) is uniformly asymptotically
stable.

Lemma 2: For the system (4), Suppose that f : R × C 	→
Rn takes R×(bounded sets of C) into bounded sets of Rn, and
μ, ν, ω : R+ 	→ R+ are continuous nondecreasing functions,
μ (s) , ν (s) , ω (s) > 0 are positive for s > 0, and μ (0) =
ν (0) = 0. If there are a continuous function V : R×Rn 	→ R
and a continuous and nondecreasing function p (s) > s for
s > 0 such that

(i) μ (‖x (t)‖) ≤ V (t, x (t)) ≤ ν (‖x (t)‖) .
(ii) For θ ∈ [−τ∗, 0], if

V (t + θ, x (t + θ)) < p (V (t, x (t)))

then
V̇i (t, x (t)) ≤ −ω (‖x(t)‖) .

Then the trivial solution of of (4) is uniformly asymptotically
stable.

III. ALL Ai ARE STABLE

As well known that the stability of each subsystem does
not always imply stability of the whole switched systems.
Hence, for system (1), this section will give the standard
delay differential equations conditions by means of multiple
Lyapunov functional and function method.

Firstly, for all i = 1, 2, · · · , m, we define the switched
regions Ωi as follows

Ωi =
{
x ∈ Rn

∣∣xT (Pi − Pi+1) x ≥ 0, x �= 0
}

, (5)

where Pi are symmetric positive definite matrices and Pm+1 =
P1.

Furthermore, define the witching law (S): when x ∈ Ωi, the
ith subsystem is active.

Based on this switching rule, we now give the following
results of this section.
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A. Multiple Lyapunov functional method

For all i = 1, 2, · · · , m, we define a Lyapunov functional
for each mode of the form

Vi (xt) = Vi1 + Vi2 + Vi3 (6)

with

Vi1 (xt) = xT (t) Pix (t) ,

Vi2 (xt) = ωi

∫ t

t−τ

xT (s)x (s) ds,

Vi3 (xt) =
∫ h

0

ds

∫ t

t−s

xT (u)x (u)du,

where ωi > 0, Pi are defined by (5) and satisfy

AT
i Pi + PiA + hI + hPiCiC

T
i Pi = −Qi (7)

with symmetric positive definite matrices Qi.
In this subsection, we wish to derive the standard delay

differential equations conditions by the multiple Lyapunov
functional (6). For this purpose, we first show that Vi satisfy
the four conditions of Theorem 1.

Prosition 1: There exist continuous and increasing func-
tions α (·) and β (·) such that α (0) = β (0) = 0 and

α (‖x (t)‖) ≤ Vi(xt) ≤ β (‖xt‖τ∗) . (8)

Proof: Note that (6), let

α (‖x (t)‖) = min
i

λmin (Pi) ‖x(t)‖2
,

β (‖xt‖τ∗) = max
i

(
λmaxPi + ωiτ + 1

2h2
) ‖xt‖2

τ∗ .

Thus, (8) follows immediately. This completes the proof.
Prosition 2: Suppose that the ith mode is active on

[tk, tk+1 ). Let Pi, Qi be defined by (7). If

‖PiBi‖ <
λmin (Qi)

2
, (9)

then there exist ωi > 0 and a continuous, increasing function,
ψi : R+ 	→ R+, satisfying ψi (0) = 0 and ψi (s) > 0 for
s > 0 such that

V̇i (xt) ≤ −ψi (‖x(t)‖) ∀t ∈ [ tk, tk+1) . (10)

Proof: Since ‖PiBi‖ < λmin(Qi)
2 , then there exist ωi > 0

such that ‖PiBi‖ ≤ ωi < λmin(Qi)
2 , assume that ωi satisfy (6),

then

V̇i1 (xt) = 2xT (t)Piẋ (t) ,

V̇i2 (xt) = ωi

(
xT (t) x (t) − xT (t − τ) x (t − τ)

)
,

V̇i3 (xt) = hxT (t) x (t) −
∫ t

t−h

xT (s) x (s) ds.

Along the system (2), taking (6), (7) and (9) into account
yields that

V̇i (xt) = xT (t)
(
AT

i Pi + PiA + hI + hPiCiC
T
i Pi

)
x (t)

+ 2xT (t) PiBix (t − τ) + ωi

(
‖x (t)‖2 − ‖x (t − τ)‖2

)
−

∫ t

t−h

[
x (s) − CT

i Pix (t)
]T [

x (s) − CT
i Pix (t)

]
ds

≤ −λmin (Qi) ‖x (t)‖2 + ‖PiBi‖
(
‖x (t)‖2 + ‖x (t − τ)‖2

)
+ ωi

(
‖x (t)‖2 − ‖x (t − τ)‖2

)
≤ −λmin (Qi) ‖x (t)‖2 + ωi

(
‖x (t)‖2 + ‖x (t − τ)‖2

)
+ ωi

(
‖x (t)‖2 − ‖x (t − τ)‖2

)
= − (λmin (Qi) − 2ωi) ‖x (t)‖2

.

Hence, let ψi (‖x (t)‖) = (λmin (Qi) − 2ωi) ‖x (t)‖2, (10)
thus holds. This completes the proof.

Prosition 3: There exists a constant μ > 0 such that, ∀xt ∈
C ([−τ∗, 0] , Rn),

Vi (xt) ≤ μVj (xt) i �= j. (11)

Proof: Since

Vi1 (xt) = xT (t) Pix (t) ≤ λmax (Pi) xT (t) x (t)

=
λmax (Pi)
λmin (Pj)

λmin (Pj)xT (t) x (t)

≤ λmax (Pi)
λmin (Pj)

xT (t) Pjx (t) ,

Vi2 (xt) = ωi

∫ t

t−τ

xT (s) x (s) ds =
ωi

ωj
ωj

∫ t

t−τ

xT (s) x (s) ds

Now, pick μ = max
{

supi,j
λmax(Pi)
λmin(Pj)

, supi,j
ωi

ωj
, 1

}
, it follows

from (6) that

Vi (xt) = Vi1 + Vi2 + Vi3 ≤ μVj (xt) .

This completes the proof.
Prosition 4: [31] Under the switching law (S), there is a

constant ξi ∈ (0, 1) such that

Vi

(
xtq

) ≤ (1 − ξi) Vi

(
xtp

)
, (12)

where tp, tq is defined by Theorem 1.
Based on the above argument, we now present the main

result of this subsection.
Theorem 3: Let Pi, Qi defined by (7), if

‖PiBi‖ <
λmin (Qi)

2
, (13)

then the trivial solution of switched system (1) with the
switching rule (S) is uniformly asymptotically stable.

Proof: Let Vi (xt) be given by (6), take (13) and Propo-
sition 1-4 into account, it follows from that Vi (xt) satisfy the
statement (i)-(iv) of Theorem 1, the rest proof is essentially
same as Theorem 1. This completes the proof.

B. Multiple Lyapunov function method

For all i = 1, 2, · · · , m, define a Lyapunov function
Vi (x (t)) for each subsystem as follows

Vi (x (t)) = xT (t) Pix (t) , (14)

where Pi is a symmetric positive definite matrix satisfying

AT
i Pi + PiAi + hPiCiC

T
i Pi = −Qi (15)

with symmetric positive definite matrix Qi.
Similarly, in this subsection, we wish to derive the standard
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differential equations conditions by using Lyapunov function
(14). To this end, we shall show that Vi satisfy the four
statements of Theorem 2. Obviously, Vi satisfy the statements
(i) and (iii). Now it remains to prove that, for the Lyapunov
function (14), the statements (ii) and (iv) are true.

Prosition 5: Suppose that the ith mode of system (1)
is active on [tk, tk+1 ). For i ∈ {1, 2, . . . , m}, let κ =
λmax (Pi)/λmin (Pi). If Vi defined by (14) satisfy

‖PiBi‖ <
λmin (Qi) − hκ

1 + κ
. (16)

Then there exist qi > 1 and ψi : R+ 	→ R+ with ψi(0) = 0
and ψi(s) > 0 for s > 0, such that

V̇i (xt) ≤ −ψi (‖x(t)‖) ∀t ∈ [ tk, tk+1) , (17)

when

qiVi (x (t)) > Vi (x (t + θ)) θ ∈ [−τ∗, 0] , (18)

where Pi ,Qi are defined by (15).
Proof: Let Vi be given by (14), when t ∈ [tk, tk+1), along

the trajectories of systems (2), we have

V̇i (x (t)) = ẋT (t) Pix (t) + xT (t) Piẋ (t)

= xT (t)
(
AT

i Pi + PiAi

)
x (t) + 2xT (t) PiBix (t − τ)

+
∫ t

t−h

[
xT (s) CT

i Pix (t) + xT (t) CT
i Pix (s)

]
ds

= xT (t)
(
AT

i Pi + PiA + hPiCiC
T
i Pi

)
x (t)

+ 2xT (t) PiBix (t − τ) +
∫ t

t−h

xT (s) x (s) ds

−
∫ t

t−h

[
x (s) − CT

i Pix (t)
]T [

x (s) − CT
i Pix (t)

]
ds

≤ xT (t)
(
AT

i Pi + PiA + hPiCiC
T
i Pi

)
x (t)

+ 2xT (t)PiBix (t − τ) +
∫ t

t−h

xT (s) x (s) ds

≤ −λmin (Qi) ‖x (t)‖2 + ‖PiBi‖
(
‖x (t)‖2 + ‖x (t − τ)‖2

)
+

∫ t

t−h

xT (s)x (s) ds.

By (16), there exist qi > 1 such that

‖PiBi‖i ≤
λmin (Qi) − hqiκ

1 + qiκ
<

λmin (Qi) − hκ

1 + κ
.

Since

qiVi (x (t)) > Vi (x (t + θ)) θ ∈ [−τ∗, 0] .

This leads to that

qiκ ‖x (t)‖2
> ‖x (t + θ)‖2

θ ∈ [−τ∗, 0] .

We proceed to get that

V̇i (x (t)) ≤ −λmin (Qi) ‖x (t)‖2 + ‖PiBi‖
(
‖x (t)‖2

+qiκ ‖x (t)‖2
)

+ hqiκ ‖x (t)‖2

= − (λmin (Qi) − (1 + qiκ) ‖PiBi‖ − hqiκ) ‖x (t)‖2
.

Finally, we can conclude that

V̇i (xt) ≤ −ψi (‖x(t)‖)
with

ψi (‖x(t)‖) = (λmin (Qi) − (1 + qiκ) ‖PiBi‖ − hqiκ) ‖x (t)‖2 .

This completes the proof.
Prosition 6: [31] Under the switching law (S), let Vi, i =

1, · · · , m are defined by (14), then there exist ξi ∈ (0, 1), such
that

V̄i (tq) ≤ (1 − ξi) V̄i (tp) (19)

with tp, tq given by Theorem 2 and

V̄i (t) = sup
−τ∗≤θ≤0

Vi (x (t + θ)) .

Theorem 4: Let Pi, Qi are defined by (15), if

‖PiBi‖ <
λmin (Qi) − hκ

1 + κ
,

then the trivial solution of (1) is uniformly asymptotically
stable for some appropriate switching rule.

Proof: Define the Lyapunov function as (14), based on
the above argument, then we know that such function satisfies
the statements (i)− (iv) of Theorem 2. The rest of the proof
follows the same lines as the proof of Theorem 2.

IV. ALL Ai ARE UNSTABLE

In this section, for the case when Ai are unstable, we
are dedicated to derive the sufficient condition guaranteeing
the stability of system (1) by means of single Lyapunov
functional and function methods. For the unstable subsystems,
the stability of the whole switched system may be achieved
by designing a appropriate switching law. To begin with, we
first make the following two assumptions:

(i) Ci are constant matrix, i.e., Ci = C for i = 1, 2, · · · , m.
(ii) For the system matrices Ai, i = 1, · · · , m, there exist a

Hurwitz convex combination

γα1,··· ,αm
(A1, · · · , Am)

=
{∑m

i=1
αiAi

∣∣∣0 < αi < 1,
∑m

i=1
αi = 1

}
.

Under the two hypotheses, we shall present the following
results.

A. Single Lyapunov functional method

For the switched systems with unstable subsystem, as a
classical approach, single Lyapunov can be apply to deal with
the stability of such systems. Here, we first consider single
Lyapunov functional method.

Theorem 5: Let A ∈ γα1,··· ,αm
(A1, · · · , Am), if there

exists a constant ξ > 1 satisfying

‖PBi‖ <
λmin (Q)

2ξ
, (20)

where P, Q are symmetric positive definite matrices satisfying

AT P + PA + hI + hPCCT P = −Q. (21)
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Then the trivial solution of system (1) is uniformly asymptot-
ically stable for some appropriate switching rule.

Proof: First of all, we shall construct the switching region.
Since A ∈ γα1,··· ,αm (A1, · · · , Am), then, for all i = 1, · · · ,
m, there exist αi ∈ (0, 1) with

∑m
i=1 αi = 1 such that A =∑m

i=1 αiAi. Taking (21) into account, we obtain

AT P + PA + hI + hPCCT P

=

(
m∑

i=1

αiA
T
i

)
P + P

(
m∑

i=1

αiAi

)
+ hI + hPCCT P

=

(
m∑

i=1

αi

)
AT

i P +

(
m∑

i=1

αi

)
PAi +

(
m∑

i=1

αi

)
hI

+

(
m∑

i=1

αi

)
hPCCT P

=

(
m∑

i=1

αi

)(
AT

i P + PAi + hI + hPCCT P
)

= −Q.

Note that αi > 0 and Q symmetric positive definite matrix,
then it follows that, for at least one i,

AT
i P + PAi + hI + hPCCT P < 0.

Now, we define domains Ωi, i = 1, · · · , m as follows

Ωi =
{
x ∈ Rn|xT

(
AT

i P + PAi + hI + hPCCT P
)
x

≤ −xT Qx
}

. (22)

It is easy to show that
⋃m

i=1 Ωi = Rn. To prevent a sliding
motion (a motion of a trajectory along a boundary between two
switching regions or chattering phenomenon, we thus construct
the switching regions

Ω̃i =
{
x ∈ Rn : xT

(
AT

i P + PiAi + hI + hPCCT P
)
x

≤ −1
ξ
xT Qx

}
, (23)

where ξ > 1 is given by (20). Obviously, Ωi ⊂ Ω̃i and⋃m
i=1 Ω̃i = Rn.
Next, we are going to design the switching law. To this end,

define

i (x) = arg min xT
(
AT

i P + PAi + hI + hPCCT P
)
x.

This function is known as the minimum rule. Now, the
switching law (S̃) can be given by:

(S0) Choose the initial mode, i0, by the minimum rule
applied to x (t0).
(S1) Stay in the ith mode as long as the state satisfies x ∈ Ω̃i.
(S3) If the state hits the boundary of Ω̃i, determine the jth
mode according to the minimum rule and switch to the jth
mode.

Based on the above argument, for stability, define the
Lyapunov functional as follows

V (xt) = xT (t) Px (t) + ω

∫ t

t−τ

xT (s) x (s) ds, (24)

where P is given by (21), ω > 0. It is easy to show that

α (‖x (t)‖) ≤ V (xt) ≤ β (‖xt‖τ∗) (25)

with
α (‖x (t)‖) = λmin (P ) ‖x(t)‖2

,

β (‖xt‖τ∗) = max (λmaxP + ωτ) ‖xt‖2
τ∗ .

Taking (20) into account, then it follows that, for some ω > 0,

‖PBi‖ ≤ ω <
λmin (Q)

2ξ
.

On the other hand, similar to Proposition 2, one can show
that

V̇ (xt) ≤ −γ (‖x(t)‖) ∀t ∈ [ tk, tk+1) (26)

with γ (‖x (t)‖) =
(
λmin (Qi)/ξ − 2ω

)
‖x (t)‖2.

Finally, taking (25), (26) and Lemma 1 into account, we thus
conclude that the trivial solution of system (1) is uniformly
asymptotically stable under the switching rule (S̃).

B. Single Lyapunov function method

In this subsection, the single Lyapunov function method
shall be used to derive the stability result for the switched
system (1).

Theorem 6: Let A ∈ γα1,··· ,αm (A1, · · · , Am). If there
exists a constant ξ > 1 satisfying

‖PBi‖ <
λmin (Q) − hκ̄

ξ (1 + κ̄)
, (27)

where κ̄ = λmax (P )/λmin (P ), and P, Q are symmetric
positive definite matrices satisfying

AT P + PA + hI + hPCCT P = −Q. (28)

Then the trivial solution of (1) is uniformly asymptotically
stable for some appropriate switching rule.

Proof: Let the switching law (S̃) be defined as Theorem
5. Consider the following Lyapunov function

V (x (t)) = xT (t) Px (t) (29)

Clearly, V (x (t)) satisfies the statement (i) of Lemma 2. Now,
it remains to show that V (x (t)) satisfies the statement (ii) of
Lemma 2. From (27), it follows that there exists a constant
q > 1 such that

‖PBi‖ <
λmin (Q) − hqκ̄

ξ (1 + qκ̄)
<

λmin (Q) − hκ̄

ξ (1 + κ̄)
. (30)

Similar to Proposition 5, we can show that

V̇ (x (t)) ≤ −γ (‖x(t)‖) , (31)

when

V (t + θ, x (t + θ)) < p (V (t, x (t))) , ∀θ ∈ [−τ∗, 0] ,
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where
p (V (t, x (t))) = qV (x (t)) ,

γ (‖x(t)‖) =
(

λminQ

ξ
− ‖PBi‖ (1 + qκ̄) − hqκ̄

)
‖x(t)‖2

.

Hence, from (31), we know that V (x (t)) satisfies the state-
ment (ii) of Lemma 2. Finally, we can conclude that the
trivial solution of (1) is uniformly asymptotically stable for
the switching rule (S̃).

V. NUMERICAL EXAMPLES

In this section, two examples will be presented to show the
validity of the main results derived above.

Example 1: Consider the switched system (1) with h = 0.2
and

A1 =

⎡
⎣ −5 2 4

−3 −5 1
2 4 −6

⎤
⎦ ;C1 =

⎡
⎣ −5 2 2

0 −1 4
2 1.4 −5.4

⎤
⎦ ;

B1 =

⎡
⎣ −0.02 0.01 0.03

0.03 −0.02 0.05
0.04 0.02 −0.03

⎤
⎦ ;

A2 =

2
4

−5.4 2.1 3.4
−3 −2.5 1
2 4 −6.1

3
5 ; C2 =

2
4

−5 2.2 1.2
0 −2.1 −4
2.1 1.5 −5.3

3
5 ;

B2 =

⎡
⎣ 0.013 - 0.02 - 0.034

0.05 0.062 0.15
0.042 0.022 0.033

⎤
⎦ .

It is easy to see that each subsystem is stable. Therefore, from
Theorem 3, by solving the equation (7), we have

P1 =

⎡
⎣ 1.3488 - 0.3412 - 0.2010

- 0.3412 1.7609 0.0132
- 0.2010 0.0132 1.2461

⎤
⎦ ;

P2 =

⎡
⎣ 1.1441 0.4623 - 0.4040

0.4623 0.9304 - 0.8812
- 0.4040 - 0.8812 1.9912

⎤
⎦ ;

Q1 =

⎡
⎣ 3.0735 - 1.6897 - 0.7643

- 1.6897 5.0403 0.2198
- 0.7643 0.2198 2.4540

⎤
⎦ ;

Q2 =

⎡
⎣ 3.4112 2.6756 - 3.4638

2.6756 3.7999 - 5.7093
- 3.4638 - 5.7093 10.0265

⎤
⎦ .

Moreover, a straightforward calculation follows that

‖P1B1‖ = 0.1062 <
λmin (Qi)

2
= 0.8351;

‖P2B2‖ = 0.1128 <
λmin (Qi)

2
= 0.1233

and

Ω1 =
{
(x1, x2, x3)| − 0.2047x2

1 − 0.8305x2
2 + 0.7451x2

3

+1.6070x1x2 − 0.4060x1x3 + 1.7888x2x3 < 0} ;

Ω2 =
{
(x1, x2, x3)|0.2047x2

1 + 0.8305x2
2 − 0.7451x2

3

−1.6070x1x2 + 0.4060x1x3 − 1.7888x2x3 < 0}

Meanwhile, define the switching law (S):

when x (t) ∈ Ω̃i, i = 1, 2, the ith subsystem is activated.

Then according to Theorem 3, the trivial solution of (1) is
uniformly asymptotically stable.

VI. CONCLUSION

In this paper, we studied the stability of a class of linear
switched system with mixed delays. First, in the stable subsys-
tems case, some standard delay differential equations results
have been presented by means of multiple Lyapunov functional
and function methods. Second, in the unstable subsystems
case, we derived some sufficient conditions guaranteeing the
uniform asymptotic stability by using single Lyapunov func-
tional and function methods.
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