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Abstract—In this work, the plate bending formulation of the 

boundary element method - BEM, based on the Reissner’s 
hypothesis, is extended to the analysis of plates reinforced by beams 
taking into account the membrane effects. The formulation is derived 
by assuming a zoned body where each sub-region defines a beam or 
a slab and all of them are represented by a chosen reference surface. 
Equilibrium and compatibility conditions are automatically imposed 
by the integral equations, which treat this composed structure as a 
single body. In order to reduce the number of degrees of freedom, the 
problem values defined on the interfaces are written in terms of their 
values on the beam axis. Initially are derived separated equations for 
the bending and stretching problems, but in the final system of 
equations the two problems are coupled and can not be treated 
separately. Finally are presented some numerical examples whose 
analytical results are known to show the accuracy of the proposed 
model. 

 
Keywords—Boundary elements, Building floor structures, Plate 

bending. 
 

I. INTRODUCTION 
HE boundary element method (BEM) has already proved 
to be a suitable numerical tool to deal with plate bending 

problems. The method is particularly recommended to 
evaluate internal force concentrations due to loads distributed 
over small regions that very often appear in practical 
problems. Moreover, the same order of errors is expected 
when computing deflections, slopes, moments and shear 
forces. Shear forces, for instance, are much better evaluated 
when compared with other numerical methods. They are not 
obtained by differentiating approximation function as for 
other numerical techniques.  

Using BEM coupled with the finite element method (FEM) 
is the natural numerical procedure to analyze plate reinforced 
by beams, where the BEM is used to represent the plate 
elements and the FEM to approximate the beam elements. 
Regarding this numerical technique several formulations have 
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already been proposed ([1]-[3]), where the BEM formulation 
is based either on Kirchhoff’s or Reissner’s hypothesis. 
However, for complex floor structures the number of degrees 
of freedom may increase rapidly diminishing the solution 
accuracy.  

An alternative scheme to reduce the number of degrees of 
freedom has been recently proposed by FERNANDES & 
VENTURINI in [4] and [5] using only a BEM formulation 
based on Kirchhoff’s hypothesis. In both work the building 
floor is modeled by a zoned plate being each sub-region the 
representation of either a beam or a slab. This composed 
structure is treated as a single body, being the equilibrium and 
compatibility conditions automatically taken into account. In 
the first work is proposed a formulation to perform simple 
bending analysis where the tractions are eliminated along the 
interfaces. Moreover in order to reduce the number of degrees 
of freedom some Kinematic assumptions were made along the 
beam width. In the second work this formulation is extended 
to take into account the membrane effects which are 
associated with bending due to the relative positions of the 
structural elements. In this case the in-plane tractions can not 
be eliminated on the interfaces, so that they should also be 
approximated along the beam width. For the plate stretching-
bending formulation, the resulting integral equations of both, 
the bending and the plane stress problems, are coupled and 
cannot be treated separately. 

In this work the BEM formulation developed in [5] is 
modified to take into account the Reissner’s hypothesis 
instead of the Kirchhoff’s. In the proposed model the tractions 
related to the bending problem is no longer eliminated on the 
interfaces. Therefore traction and displacements related to 
both problems (bending and stretching) are approximated 
along the beam width, leading to a model where the problem 
values are defined only on the beams axis and on the plate 
boundary without beams. The accuracy of the proposed model 
is illustrated by numerical examples whose analytical results 
are known. 

Note that in the classical theory (Kirchhoff’s) [5], [6] and 
[7] are defined only four boundary values and its inaccuracy 
turns out to be important for thick plates, especially in the 
edge zone of the plate and around holes whose diameter is not 
larger than the plate thickness. In the Reissner’s theory ([8], 
[9] and [10]) which can be used either for thin or thick plates, 
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are defined six boundary values and it is more accurate 
because it takes into account the shear deformation effect. 

II. BASIC EQUATIONS 
Without loss of generality, let us consider the plate depicted 

in Fig. 1, where h1, h2 and h3 are the thicknesses of the sub-
regions 1Ω , 2Ω  and 3Ω , whose external boundaries are 1Γ , 

2Γ  and 3Γ , respectively. The total external boundary is given 
by Γ  while jkΓ  represents the interface between the adjacent 

sub-regions jΩ  and kΩ . The Cartesian system of co-
ordinates (axes x1, x2 and x3) is defined on a reference surface, 
whose distance to the sub-regions middle surfaces are given 
by 1c , 2c  and 3c  . 
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Fig. 1 (a) General zoned plate domain; (b) reference surface view 
 
Let us consider initially, the bending problem. For a point 

placed at any of those plate sub-regions, the following 
equations are defined: 

-The equilibrium equations in terms of internal forces: 
 

0Qijij =−,M        i, j =1, 2                           (1) 

0gQ ii =+,                                  (2) 
 

where g is the distributed load acting on the plate middle 
surface, mij are bending and twisting moments and Qi 
represents shear forces. 

-The generalised internal forces written in terms of 
displacement: 
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where i, j, k =1, 2; �i is the rotation in the i direction, w the 
deflection, lk ,φ  the plate curvature, lll3 w,+= φψ  the shear 

deformation, )/( 23 1EhD ν−=  the flexural rigidity, ν the 
Poisson’s ration, λ a constant related to shear effect given by 

h10 /=λ  and ijδ  is the Kronecker delta. 
-Finally, the plate bending differential equations given by: 
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where ww 4

iijj ∇=, , being 4∇  the bi-harmonic operator; 

ww 2
ii ∇=,  being 2∇  the bi-Laplacian operator. 
Equations (5) and (6) result into the set of differential 

equations, being (5) and. (6) a second and fourth order 
equation, respectively, leading therefore to six independent 
boundary values: nM ; nsM , nQ , w , nφ  and sφ , being (n, s) 
the local co-ordinate system, with n and s referred to the plate 
boundary normal and tangential directions, respectively. 

Considering now the stretching problem, the in-plane 
equilibrium equation is: 

 
0bN ijij =+,                                 (7) 

 
where ib represents the body forces distributed over the plate 
middle surface and ijN  is the membrane internal force, which, 
assuming plane stress conditions, is given by: 
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The in-plane equilibrium can also be written in terms of 

displacements by replacing (8) into (7) as follows: 
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The problem definition is then completed by assuming the 

following boundary conditions over Γ : ii UU =  on 

uΓ (generalised displacements: deflections, rotations and in-

plane displacements) and ii PP =  on pΓ (generalised 
tractions: bending and twisting moments, shear forces and in-
plane tractions), where ΓΓΓ =∪ pu .  

III. INTEGRAL REPRESENTATIONS 
Let us initially consider the simple bending problem. 

Considering the plate equilibrium equations (1) and (2) the 
following weighted residual equation can be obtained for a 
simple plate:  
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where i, j =1, 2 and k=1, 2, 3; k = 1, 2 refers to unit moments 
applied in the x1 and x2 directions and k=3 refers to a unit load 
acting in the x3 direction. 

Integrating (10) by parts twice, considering (3) and (4) and 
writing the values in terms of the local system of coordinates 
(n,s), the following integral equation of the generalised 
displacements can be obtained: 
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where k=m, l, 3; i=1, 2; gΩ  is the area where the load g is 

distributed, the free term value )(qc  depends on the position 
of the point q: 0qc =)(  for external points 1qc =)(  for 
internal points and 21Qc /)( =  for boundary points; mmU φ= , 

llU φ=  and wU 3 = , being m and l the local system (n, s) for 
boundary points or any direction for internal points. 

Let us now consider a zoned plate as the one depicted in the 
Fig. 1, as example. In this case (11) is valid to each sub-region 
separately. Then, taking into account the equilibrium and 
compatibility conditions, writing (11) to all sub-regions and 
summing them the following integral equation for the zoned 
plate can be obtained: 
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where Ns is the sub-regions number and Nint the interfaces 
number, jaΓ  represents a interface for which the subscript a 

denotes the adjacent sub-region to jΩ  

Note that in both integrals along the interface jaΓ  all 

values are related to the local system defined on jaΓ  and the 

generalised fundamental values a
kiU *  and a

kiP*  are given in 
terms of the rigidity D and thickness h of the sub-region aΩ . 
In this case the tractions can not be eliminated along the 

interfaces, because it is not possible to write the fundamental 
expressions related to the sub-region jΩ  in terms of their 
values in a chosen sub-region, as it has been considered for 
the formulation based on Kirchhoff’s hypothesis [5].  

In (12) all sub-regions are still referred to their middle 
surface. The bending equation for the coupled stretching-
bending problem is obtained by writing the moment values on 
the middle surface of sub-region jΩ  in terms of their values 

on the reference surface ( r
nM  and r

nsM ), as follow: 
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where pn and ps are the in-plane tractions. 

Replacing (13) and (14) into (12) the integral equation for 
the bending problem is finally obtained: 
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where k=m, l, 3; i=1, 2 and all values (w, �s, �n, pn, ps, Mn, 
Mns and Qn) are referred to the reference surface.  

Let us now consider the stretching problem. For simplicity 
and also to eliminate the in-plane tractions along the 
interfaces, the fundamental value )*( j

kiu  related to the sub-

region jΩ  will be written in terms of the value *
kiu  referred to 

the sub-region where the collocation point is placed as follow:  
 

jki
j
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where jjj tEE = . 
From the weighted residual method and considering (16) 

one can derive the integral representation of displacements for 
the sub-region jΩ . The following integral representation for 
the whole plate is obtained by summing the integral equations 
of all sub-regions and enforcing equilibrium and compatibility 
conditions along the interface: 
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Note that in (17) the in-plane tractions were eliminated 

from the interfaces, where the only remaining values are the 
displacements. 

Writing now the in-plane displacements defined over the 
middle surface (us and un) in terms of their values on the 
reference surface ( ij

r
i

j
i cuu φ−= , with i=n,s) the following 

stretching integral equation for the coupled stretching-bending 
problem is obtained: 
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In (18) are defined only displacements along the interfaces, 

given by: us, un, �s and �n. Along the external boundary, 
besides the previous values are also defined the in-plane 
tractions pn and ps. 

Let us now consider the beam B3 represented in Fig. 2a by 
the sub-region Ω3. In order to reduce the number of degrees of 
freedom, some Kinematic hypothesis will be assumed along 
the beams cross sections, leading to a model where the values 
will be defined along the beam skeleton line instead of its 
boundary. The displacements w, us, un, �s and �n. will be 
assumed to be linear along the beam width. Thus the interface 
displacement vector related to the beam interfaces are 
translated to the skeleton line, as follows: 
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where b3 is the beam width , ij

k
Γφ , ij

ku Γ  and ijwΓ  are 

displacement components along the interface ijΓ ; kφ , w  

nk ,φ , nku ,  and w,n are components along the skeleton line. 
Observe that adopting the approximations defined in (19) 

and (20), new variables related to the beam axis appear in the 
formulation: the rotations w,n us,n and un,n and the curvatures 
�s,n and �n,n which will be all considered constant along the 
beam width. 
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Fig. 2 (a) reinforced plate view; (b) deflection approximations along 

interfaces 
 

The tractions Mn, Mns and Qn defined on the interfaces will 
be written in terms of its components along the beam axis as 
follow: 

 
32

nQ Γ = 31
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32
nM Γ = 2bQM 3nn /+                             (22) 

31
nM Γ 2bQM 3nn /−=                             (23) 

32
nsM Γ = 31

nsM Γ = nsM                                (24) 
 

where Mn, Mns and Qn refers to the beam axis while the 
directions of ij

nM Γ , ij
nsM Γ  and ij

nQΓ  are given by the local 
coordinate system defined on interfaces.   

Finally, the stress related to the stretching problem will be 
assumed to vary linearly along the beam cross section, 
resulting into the following approximations for the in-plane 
tractions (pn and ps): 
 

3132
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where pi is the resultant on the skeleton line. 

Note that the integral representations of w,m, �k,m and uk,m 
that can be easily obtained by differentiating (15) or (18). 
Despite of the values being defined along the beam axis, the 
integrals are still performed on the interfaces. Thus as the 
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collocation points are adopted on the beam axis there is no 
problem of singularities. 

IV. ALGEBRAIC EQUATIONS 
The integral representations (15) and (18) have to be 

transformed into algebraic expressions after discretizing the 
boundary and interfaces into elements. It has been adopted 
linear elements to approximate the problem geometry while 
the variables were approximated by quadratic shape functions. 

Along the external boundary without beams ten values are 
defined (w, φ n, φ s, Qn, Mn, Mns, us; un; pn and ps), being five 
of them prescribed, requiring therefore five algebraic 
equations for each boundary node. It has been adopted to 
write (15) plus (18) for an external collocation point very near 
to the boundary. 

For each external or internal beam node are defined fifteen 
values: �n, �s, �s,n; �n,n, w, w,n, Mn, Mns, Qn us; un; us,n; un,n; pn 
and ps. All these values remain as unknowns in the internal 
beams, requiring therefore fifteen algebraic equations which 
will be written for collocation points on the skeleton line. In 
this case the adopted equations were those corresponding to 
the unknowns. For external beams, the displacements us,n; 
un,n; �s,n; �n,n and w,n are problem unknowns while five of the 
remaining values must be prescribed, leading to ten unknowns 
for each external beam node. It has been adopted to write, for 
collocations points on the beam axis, the following ten 
algebraic equations: us; un; us,n; un,n; w, φ n, φ s, �s,n; �n,n and 
w,n. In both cases the collocations can be coincident with the 
chosen node or defined at element internal points when 
variable discontinuity is required at the element end. 

After writing the recommended algebraic relations one 
obtains the set of equations defined bellow which can be 
solved after applying the boundary conditions.  
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where the upper e bottom parts indicate, respectively, 
boundary and interface collocation algebraic equations of the 
bending and stretching problems; { }U and { }P  are 
displacement and traction vectors, respectively; { }T  is the 
independent vector due to the applied loads; [ ]H  and [ ]G  are 
matrices obtained by integrating all boundary and interfaces; 
B and S are related to bending and stretching problems. 

Equation (26) can be represented in a reduced form, as 
follows: 

 
=

~~
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~~
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~
T                                   (27) 

 
 

V. NUMERICAL APPLICATION 
An example is now shown to demonstrate the performance 

of the proposed formulation: a simple plate reinforced by an 
internal beam with particular load to have exact solution.  

Let us consider the stiffened plate depicted in Fig. 4a. In 
this example the two small sides are assumed simply 
supported, while the other two are free 
(Qn=Mn=Mns=ps=pn=0). The small side with coordinate 
x1=0.0cm is fix (un=0), with the following boundary 
conditions: w=Mn=Mns=us=un=0 for the middle point and 
w=Mn=Mns=ps=un=0 for the remaining nodes. On the 
opposite side is prescribed the load pn=10000kN/m, being he 
others prescribed values given by: w=Mn=Mns=ps=0. The 
plate and beam thicknesses are, respectively: hp=10cm and 
hB=20cm. The following elastic parameters have been 
adopted: Young’s modulus E = 3.0x106kN/m2 and Poisson’s 
ratio ν=0.0.  

One has used 12 elements to discretize the plate sides 
without beams, 2 elements along the beam axe and 1 element 
on each boundary corresponding to the beam width, resulting 
into sixteen quadratic elements and forty one nodes (see Fig 
4b). This poor discretization is enough to lead to the exact 
values for both displacements and tractions. 
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Fig. 4 Stiffened plate (a) geometry; (b) discretization, (c) plate view 

 
The plate middle surface will be adopted as the reference 

one (see Fig. 4c), therefore cP=0.0cm and cB=5cm for the 
plate and beam. In any of the three sub-regions the exact 
solution for displacement in the x1 direction is given by: 

( +−= IcxPu 2
j1n1 /Δ ) EA1 // , being cj the value of c in the 

sub-region jΩ . In Table I are shown the analytical and 
numerical results for the displacement u1, considering two 
discretizations: the one defined in Fig. 4 and a finer mesh with 
58 elements. 

 
 
 
 
 
 

50cm

50cm

50cm

10cm

a b

1 5
6
10

14

18
1923 

24 

28 

32 

36 

37 41

X1

 

 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:2, 2007

44

 

 

TABLE I 
NUMERICAL AND EXACT RESULTS IN BOUNDARY NODES 

 
1u (cm)N

ode 14 
(x1=50cm) 

1u (cm)N
ode 10 

(x1=60cm) 

1u (cm) 
Node 6 

(x1=110c) 
Exact solution 1,6667 1,83334 3,5 
16 elements 1,668 1,836 3,50 
58 elements 1,667 1,834 3,50 

 
Moreover the computed in-plane traction Pn was equal to 

the applied load for both the nodes on the fixed side and the 
internal beam axis, as expected.  

 

VI. CONCLUSION 
The BEM formulation based on Reissner’s hypothesis for 

bending analysis of plates reinforced by beams has been 
extended to take into account the membrane effects. The 
beams are treated as narrow sub-regions with larger thickness 
and are not displayed over their middle surface. The 
performance of the proposed formulation has been confirmed 
by comparing the results with analytical solutions. 
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