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Abstract—Cancer classification to their corresponding cohorts 

has been key area of research in bioinformatics aiming better 
prognosis of the disease. High dimensionality of gene data has been 
makes it a complex task and requires significance data identification 
technique in order to reducing the dimensionality and identification 
of significant information. In this paper, we have proposed a novel 
approach for classification of oral cancer into metastasis positive and 
negative patients. We have used significance analysis of microarrays 
(SAM) for identifying significant genes which constitutes gene 
signature. 3 different gene signatures were identified using SAM 
from 3 different combination of training datasets and their 
classification accuracy was calculated on corresponding testing 
datasets using k-Nearest Neighbour (kNN), Fuzzy C-Means 
Clustering (FCM), Support Vector Machine (SVM) and 
Backpropagation Neural Network (BPNN). A final gene signature of 
only 9 genes was obtained from above 3 individual gene signatures. 9 
gene signature’s classification capability was compared using same 
classifiers on same testing datasets. Results obtained from 
experimentation shows that 9 gene signature classified all samples in 
testing dataset accurately while individual genes could not classify all 
accurately. 
 

Keywords—Cancer, Gene Signature, SAM, Classification.  

I. INTRODUCTION 
LASSIFICATION related problems have been key 
research in the field of medical diagnosis in last few 

decades. Genes hold the information to build and maintain an 
organism's cells and pass genetic traits to offspring. All 
organisms have many genes corresponding to various different 
biological traits, some of which are immediately visible, such 
as eye colour or number of limbs, and some of which are not, 
such as blood type or increased risk for specific diseases, or 
the thousands of basic biochemical processes that comprise 
life. As genes posses all the information associated with 
survival and inheritance. Considering the information 
associated with genes, their sequences can be used for the 
purpose of classification of clinically positive and negative 
patient of oral cancer metastasis [1-6]. During the evolution of 
cancers through the primary to metastasis stage, genes related 
 

A.Shukla is with the Indian Institute of Information Technology and 
Management, Gwalior, India. He is with the Department of ICT working as a 
professor (e-mail: dranupamshukla@gmail.com). 

A. Tarsauliya is with the Indian Institute of Information Technology and 
Management, Gwalior, India (e-mail: anupam8391[@]gmail.com).  

R. Tiwari is with the Indian Institute of Information Technology and 
Management, Gwalior, India. She is with the Department of ICT working as a 
Assistant professor (e-mail: tiwariritu2@gmail.com). 

S. Sharma is with the Indian Institute of Information Technology and 
Management, Gwalior, India (e-mail: sanjeev.sharma1868@gmail.com). 

to cancer evolution information posses malignant nature. With 
the help of these identified genes, we can classify them into 
lymphatic non-metastasis and metastasis stage. 

A genome posse’s number of genes which makes problem 
data of a higher dimension. Various techniques such as 
Significance Analysis of Microarrays (SAM) [7], Empirical 
Bayes Analysis of Microarrays (EBAM), Limma are used to 
identify significant genes out of the genome. In this 
experimentation, SAM has been used for the purpose of 
identification of significant differential genes. SAM gives as 
output of set of genes which can be used for isolation between 
clinically positive and negative tested patients. 

Classification models generally follow either supervised 
learning or unsupervised learning. In case of supervised 
learning, training data target classes are given to learn their 
parameters. While in unsupervised learning, data target class 
is not given. Model in case of unsupervised learning has to 
identify the class itself based upon the data given. Supervised 
learning classification models like k-nearest neighbour, 
artificial neural network, support vector machine are used for 
the task of classification. While Fuzzy C-Means Clustering 
algorithm has also been used, incorporates unsupervised 
learning. Further optimization methods like genetic algorithm 
and particle swarm optimization are used for optimizing the 
neural network parameters. 

The k-nearest neighbour classifier labels an unknown object 
O with the label of the majority of the k nearest neighbours. 
An input is classified by a majority vote of its neighbors, with 
the object being assigned to the class most common amongst 
its k nearest neighbors [13]. Fuzzy C-Means Clustering is a 
data clustering technique wherein each data point belongs to a 
cluster to some degree that is specified by a membership 
grade. It provides a method that shows how to group data 
points that populate some multidimensional space into a 
specific number of different clusters [14]. SVM is primarily a 
statistical method that performs classification tasks by 
constructing hyperplanes in a multidimensional space that 
separates cases of different class labels. Given a set of training 
examples, each marked as belonging to one of two categories, 
an SVM training algorithm builds a model that assigns new 
examples into one category or the other [16]. The success of 
Artificial Neural Network (ANN) applications can be qualified 
of their features and powerful pattern recognitions capability. 
The use of ANN in this field has been growing due to their 
ability to model complex nonlinear systems on sample data. 
ANN functions by finding correlations and patterns in the data 
which you provide [18].  
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TABLE I 

DESCRIPTION OF TRAINING AND TESTING DATASETS USED 
Dataset N+ N- 

Training Set 1 9 6 

Test Set 1 5 2 

Training Set 2 9 5 

Test Set 2 5 3 

Training Set 3 10 5 

Test Set 3 4 3 

 

B.3. Gene Signature 
Not all genes into the gene sequences are affected due to 

some diseases or changes into organisms. Changes in some of 
them might be due to cancer diseases while some of them 
might have change due to diabetes although some affected 
genes might be common. Thus corresponding to a disease we 
first find gene signatures for carrying out the further. 

B.3.1 Significance Analysis of Microarrays (SAM) 
SAM proposed by Tusher et al. (2001) is used for 

identifying differential genes for making the gene signature. 
The input to SAM is gene expression measurements from a set 
of microarray experiments, as well as a response variable from 
each experiment. SAM computes a statistic d(i) for each gene 
i, measuring the strength of the relationship between gene 
expression and the response variable. It uses repeated 
permutations of the data to determine if the expressions of any 
genes are significantly related to the response. The cutoff for 
significance is determined by a tuning parameter delta, chosen 
by the user based on the false positive rate. One can also 
choose a fold change parameter, to ensure that called genes 
change at least a pre-specified amount. 
 

B.3.1.1 Gene Signature 1 
Gene signature 1 was identified using SAM from training 

data set 1 which consists of 9 metastasis positive and 6 
metastasis negative patients. SAM plot for the same showing 
delta and False Discovery Rate (FDR) for the training dataset 
1 is shown in Fig. 2.  Delta value of 0.6 was taken and 70 
significant genes were identified. SAM plot for corresponding 
delta of 0.6 has been shown in Fig. 2. Clustergram in Fig. 4 
uses hierarchical clustering to visualize the classification 
capability of identified gene signature. It is able to correctly 
classify all the samples in training dataset 1.  

 
Fig. 2 SAM plot for set1 obtained from siggenes package of R 

 
Fig. 3 SAM plot showing significant genes corresponding to 

delta=0.60 

 
Fig. 4 Clustergram showing discrimination ability of gene signature 1 
 

B.3.1.2 Gene Signature 2 
Gene signature 2 was identified using SAM from training 

data set 2 which consists of 9 metastasis positive and 5 
metastasis negative patients. SAM plot for the same showing 
delta and False Discovery Rate (FDR) for the training dataset 
1 is shown in Fig. 5.  Delta value of 0.565 was taken and 70 
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significant genes were identified. SAM plot for corresponding 
delta of 0.565 has been shown in Fig. 6. Clustergram in Fig. 7 
uses hierarchical clustering to visualize the classification 
capability of identified gene signature. It is able to correctly 
classify all the samples in training dataset 2.  
 

 
Fig. 5 SAM plot for set2 obtained from siggenes package of R 

 

 
 

Fig. 6 SAM plot showing significant genes corresponding to 
delta=0.565. 

 
B.3.1.3 Gene Signature 3 
Gene signature 3 was identified using SAM from training 

data set 3 which consists of 10 metastasis positive and 5 
metastasis negative patients. SAM plot for the same showing 
delta and False Discovery Rate (FDR) for the training dataset 
3 is shown in Fig. 8.  Delta value of 0.3425 was taken and 73 
significant genes were identified. SAM plot for corresponding 
delta of 0.3425 has been shown in Fig. 9. Clustergram in Fig. 
10 uses hierarchical clustering to visualize the classification 
capability of identified gene signature. It is able to correctly 
classify all the samples in training dataset 3. 

 
Fig. 7 Clustergram showing discrimination ability of gene signature 2 
 

 
Fig. 8 SAM plot for set 3 obtained from siggenes package of R. 

 

 
Fig. 9 SAM plot showing significant genes corresponding to 

delta=0.3425 
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Fig. 10 Clustergram showing discrimination ability of gene signature 

3 
 

B.4. Classification Algorithms 
For the purpose of classification and prediction of positive 

patients, models like Neural Network Models, Clustering 
based classification; Support Vector Machines etc. can be 
used. 
 

B.4.1 k- Nearest Neighbour Classifier (k-NN) 
The k-nearest neighbour classifier labels an unknown object 

O with the label of the majority of the k nearest neighbours. 
An input is classified by a majority vote of its neighbors, with 
the object being assigned to the class most common amongst 
its k nearest neighbors. A neighbour is deemed nearest if it has 
the smallest distance, in the Euclidian sense, in feature space. 
For k = 1, this is the label of its closest neighbour in the 
learning set. A disadvantage of this method is its large 
computing power requirement, since for classifying an object 
its distance to all the objects in the learning set has to be 
calculated. 

 

 
 

Fig. 11 Figure illustrating working of k-NN in feature space 
 

B.4.1 Fuzzy C-Means Clustering (FCM) 
FCM is a data clustering technique wherein each data point 

belongs to a cluster to some degree that is specified by a 
membership grade. It provides a method that shows how to 

group data points that populate some multidimensional space 
into a specific number of different clusters. It starts with an 
initial guess for the cluster centers, which are intended to mark 
the mean location of each cluster. The initial guess for these 
cluster centers is most likely incorrect. Additionally, it assigns 
every data point a membership grade for each cluster. By 
iteratively updating the cluster centers and the membership 
grades for each data point, it iteratively moves the cluster 
centers to the right location within a data set. This iteration is 
based on minimizing an objective function that represents the 
distance from any given data point to a cluster center weighted 
by that data point's membership grade. 
 

 
Fig. 12 Figure illustrating working of FCM 

 
B.4.3 Support Vector Machine (SVM) 
SVM is primarily a statistical method that performs 

classification tasks by constructing hyperplanes in a 
multidimensional space that separates cases of different class 
labels [13,14]. Given a set of training examples, each marked 
as belonging to one of two categories, an SVM training 
algorithm builds a model that assigns new examples into one 
category or the other. A SVM model is a representation of the 
examples as points in space, mapped so that the examples of 
the separate categories are divided by a clear gap that is as 
wide as possible. New examples are then mapped into that 
same space and predicted to belong to a category based on 
which side of the gap they fall on. Fig. 4 describes the SVM 
working; left hand side shows the class 1 and 2 samples in 
input space which are not linearly separable. SVM using its 
kernel function maps the input space data to a higher 
dimensional feature space where two classes are linearly 
separable. SVM finds the hyperplane which has maximum 
margin from the class 1 and class 2 to avoid the 
misclassification. 
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TABLE III 
MODELS AND CORRESPONDING RESULTS 

 
 

 
III.   CONCLUSION 

It can be concluded from results that gene signature 
identified due to difference between N+ and N- type can be 
used for the purpose of classification. 9 genes signature 
obtained after intersection of 3 gene signatures shows better 
discriminating ability than individual gene signatures. SVM 
and BPNN were able to accurately classify all the samples 
from test set and lymphatic node metastasis samples into 
corresponding classes using 9 genes signature. Results 
obtained concluded that 9 genes signature obtained from 
primary tumor samples can be used for classification of 
positive, negative metastasis cancer samples and lymphatic 
metastasis. 
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Model  Gene 
Sig. 1  

Gene 
Sig. 2  

Gene 
Sig. 3  

9 Gene Sig.  

k- Nearest 
Neighbour  

3 / 7 
4 / 5  

5 / 8 
4 / 5  

3 / 7 
4 / 5  

(5/7,6/8,7/7) 
(5/5,4/5,5/5)  

Fuzzy C-Means 
Clustering  

3 / 7 
4 / 5  

5 / 8 
3 / 5  

3 / 7 
4 / 5  

(5/7,6/8,7/7) 
(4/5,4/5,4/5)  

Support Vector 
Machine  

4 / 7 
4 /  5  

5 / 8 
4 / 5  

5 / 7 
5 / 5  

(7/7, 8/8,7/7) 
(5/5,5/5,5/5)  

Backpropagation 
Neural Network  

5 / 7 
5 / 5  

6 / 8 
4 / 5  

6 / 7 
5 / 5  

(7/7,8/8,7/7) 
(5/5,5/5,5/5)  
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