
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:8, 2012

795

Some (v + 1, b + r + λ + 1, r + λ + 1, k, λ + 1)
Balanced Incomplete Block Designs (BIBDs) from

Lotto Designs (LDs)
Oluwaseun. A. Alawode, Timothy. A. Bamiduro and Adekunle. A. Eludire

Abstract—The paper considered the construction of BIBDs us-
ing potential Lotto Designs (LDs) earlier derived from qualifying
parent BIBDs. The study utilized Li’s condition � pr
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2 ) λ, to determine the qualification of a

parent BIBD (v, b, r, k, λ) as LD (n, k, p, t) constrained on v ≥ k,
v ≥ p, t ≤ min{k, p} and then considered the case k = t
since t is the smallest number of tickets that can guarantee a win
in a lottery. The (15, 140, 28, 3, 4) and (7, 7, 3, 3, 1) BIBDs were
selected as parent BIBDs to illustrate the procedure. These BIBDs
yielded three potential LDs each. Each of the LDs was completely
generated and their properties studied. The three LDs from the
(15, 140, 28, 3, 4) produced (9, 84, 28, 3, 7), (10, 120, 36, 3, 8) and
(11, 165, 45, 3, 9) BIBDs while those from the (7, 7, 3, 3, 1) pro-
duced the (5, 10, 6, 3, 3), (6, 20, 10, 3, 4) and (7, 35, 15, 3, 5) BIBDs.
The produced BIBDs follow the generalization (v + 1, b + r + λ +
1, r + λ + 1, k, λ + 1) where (v, b, r, k, λ) are the parameters of the
(9, 84, 28, 3, 7) and (5, 10, 6, 3, 3) BIBDs. All the BIBDs produced
are unreduced designs.

Keywords—Balanced Incomplete Block Designs, Lotto Designs,
Unreduced Designs, Lottery games.

I. INTRODUCTION

Balanced Incomplete Block Designs (BIBDs) are used in the
design and analysis of experiments to improve efficiency and
meet experimental necessities in randomized block designs.
They are used to design experiments where the subjects must
be divided into blocks (subsets) of the same size to receive
different treatments, such that each subject is tested the same
number of times and every pair of subjects appears in the
same number of subsets. Instances of biological and physical
conditions that can lead to a predetermined, fixed block size
where the researcher is compelled to use BIBDs are given
in [1]. Some other applications of BIBDs include their use
in secrecy and authentication codes, tournament scheduling,
group testing and so on.

A Balanced Incomplete Block Design (BIBD) [2] with
parameters (v, b, r, k, λ) is a pair (X,A) , where X is a set,
A is a collection of subsets of X , and the five parameters are
nonnegative integers defined as follows:

• v (order) is the size of X (elements of X are points,
varieties or treatments),

• b (block number) is the number of elements of A (ele-
ments of A are blocks),
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• r (replication number) is the number of blocks to which
every point belongs,

• k (block size) is the common size of each block, and
• λ (index) is the number of blocks to which every pair of

distinct points belongs.

Several construction methods for BIBDs exist in literature.
These include [3], [4], [5] and [6]. New BIBDs can also
be constructed from old BIBDs. For instance, the sum and
block complementation techniques for constructing BIBDs
were provided in [7]. Block section and intersection techniques
for constructing new designs from parent symmetric designs
were described in [8]. In this study, we present the construction
of some BIBDs from parent BIBDs using potential Lotto
Designs.

II. LOTTO DESIGNS

In a typical lottery game, a person chooses k numbers from
v numbers with a small amount of money. This constitutes
the ticket. The sale of tickets is stopped at a certain point and
the organizers pick p numbers from the v numbers randomly.
These p numbers are called the winning numbers. If any of
the tickets sold match t or more of the winning numbers, a
prize is given to the holder of the matching ticket. The larger
the value of t, the larger the prize. The historical background
of lottery and some types of lottery are given in [9].

A formal definition of Lotto Designs is given in [10]:

“Suppose v, k, p and t are integers and B is a
collection of k-subsets of a set X of v elements
(usually X is X(v)). Then, B is an (v, k, p, t)
Lotto Design (LD) if an arbitrary p-subset of X(v)
intersects relevant k-set of B in at least t elements.
The k-sets in B are known as the blocks of the
Lotto design B. The elements of X are known as
the varieties of the design.”

The author also defined potential lotto designs as collections
of k-sets formed during the construction which may or may
not be lotto designs.

The primary aim of most researchers and players is to
know the minimum number of tickets required to obtain a
match of at least t numbers. This minimum is usually denoted
by L(v, k, p, t). Several researches have been carried out in
this regard. In [11], a computer program that can be used
to construct minimal (v, k, p, t) lottery design was presented
while [12] determined the values for L(v, 6, 6, 2) for v ≤ 54.
Several upper bound construction methods for LDs, one of
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which is the use of BIBDs was presented in [10] while the
notion of a lottery graph and closed-form bound formulations
for the lottery number were introduced in [13].

III. RELATIONSHIP BETWEEN LDS AND BIBDS

BIBDs can be used in constructing upper bounds for lotto
designs. However, not all BIBDs can produce Lotto Designs.
To recognize the qualifying BIBDs, [10] gave the general
condition they must satisfy in the following theorem:

Theorem[10]:
If B is the set of blocks of a (v, b, r, k, λ) BIBD and p, t

are positive integers where � pr
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2 ) λ, then B is the set of blocks of an (v, k, p, t) Lotto design.

Hence L(v, k, p, t) ≤ b.

IV. UNREDUCED BIBDS

A (v, b, r, k, λ) BIBD is said to be an unreduced design if
b = ( v

k ), r =
(

v−1
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)
, and λ =

(
v−2
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)
. They are designs

that contain all possible combinations of k out of v varieties.
Unreduced designs are the simplest type of BIBDs. They have
the advantage of being simple and easy to construct. They
have been found to be useful in the construction of Partially
Balanced Incomplete Block Designs (PBIBD)[14] and in the
theory of resistant designs [15].

V. METHODOLOGY

Two BIBDs, the (15, 140, 28, 3, 4) and the (7, 7, 3, 3, 1)
BIBDs were selected from a list of BIBDs presented in [8]
for the purpose of illustration. The parameters p, r, t and
λ specified in Li’s condition were integers defined such that
3 ≤ p ≤ 11, 3 ≤ t ≤ 8 and t ≤ min{k, p} and k = t;
r and λ were obtained from the selected BIBD (v, b, r, k, λ)
with v ≥ p, v ≥ k. The ranges of p and t were selected to
fit the range of most lottery formats available. A FORTRAN
language program was written to implement the expression for
Li’s condition so as to determine the (v, k, p, t) lotto designs
that can be derived from the selected BIBDs. A complete
generation of these LDs was made using a Microsoft Office
Access database computer program which was adapted from
[16] and their properties were then investigated for compliance
with properties of BIBDs.

VI. RESULTS AND DISCUSSION

Tables I and II show the results of the implementation of Li’s
condition for the (15, 140, 28, 3, 4) and (7, 7, 3, 3, 1) BIBDs.
COMBT, COMBP, COMTOT and COMBL represent com-
putations of the different components in Li’s condition. YES
indicates Li’s condition is satisfied and NO indicates that the
condition is not satisfied. Hence the (15, 140, 28, 3, 4) BIBD
was found to qualify as LD(15, 3, 9, 3), LD(15, 3, 10, 3) and
LD(15, 3, 11, 3) while the (7, 7, 3, 3, 1) BIBD qualified as
LD(7, 3, 5, 3), LD(7, 3, 6, 3), LD(7, 3, 7, 3).

Tables III-VIII show the complete generation of the LDs.
Any of the p values can be used for the generation. This
gives the same set of parameters although the elements
used for the arrangement would be different. This implies

TABLE I
IMPLEMENTATION OF LI’S CONDITION FOR (15, 140, 28, 3, 4) BIBD

P T R L COMBT COMBP COMTOT COMBL ANSW
3 3 28 4 42.00 0.00 42.00 12.00 NO
3 4 28 4 84.00 0.00 84.00 12.00 NO
3 5 28 4 126.00 0.00 126.00 12.00 NO
3 6 28 4 160.00 6.00 166.00 12.00 NO
3 7 28 4 210.00 0.00 210.00 12.00 NO
3 8 28 4 252.00 0.00 252.00 12.00 NO
4 3 28 4 56.00 0.00 56.00 24.00 NO
4 4 28 4 111.00 0.00 111.00 24.00 NO
4 5 28 4 168.00 0.00 168.00 24.00 NO
4 6 28 4 220.00 1.00 221.00 24.00 NO
4 7 28 4 270.00 6.00 276.00 24.00 NO
4 8 28 4 336.00 0.00 336.00 24.00 NO
5 3 28 4 70.00 0.00 70.00 40.00 NO
5 4 28 4 138.00 1.00 139.00 40.00 NO
5 5 28 4 210.00 0.00 210.00 40.00 NO
5 6 28 4 280.00 0.00 280.00 40.00 NO
5 7 28 4 345.00 1.00 346.00 40.00 NO
5 8 28 4 420.00 0.00 420.00 40.00 NO
6 3 28 4 84.00 0.00 84.00 60.00 NO
6 4 28 4 168.00 0.00 168.00 60.00 NO
6 5 28 4 252.00 0.00 252.00 60.00 NO
6 6 28 4 330.00 3.00 333.00 60.00 NO
6 7 28 4 420.00 0.00 420.00 60.00 NO
6 8 28 4 504.00 0.00 504.00 60.00 NO
7 3 28 4 98.00 0.00 98.00 84.00 NO
7 4 28 4 195.00 0.00 195.00 84.00 NO
7 5 28 4 294.00 0.00 294.00 84.00 NO
7 6 28 4 390.00 0.00 390.00 84.00 NO
7 7 28 4 480.00 6.00 486.00 84.00 NO
7 8 28 4 588.00 0.00 588.00 84.00 NO
8 3 28 4 112.00 0.00 112.00 112.00 NO
8 4 28 4 222.00 1.00 223.00 112.00 NO
8 5 28 4 336.00 0.00 336.00 112.00 NO
8 6 28 4 440.00 6.00 446.00 112.00 NO
8 7 28 4 555.00 1.00 556.00 112.00 NO
8 8 28 4 672.00 0.00 672.00 112.00 NO
9 3 28 4 126.00 0.00 126.00 144.00 YES
9 4 28 4 252.00 0.00 252.00 144.00 NO
9 5 28 4 378.00 0.00 378.00 144.00 NO
9 6 28 4 500.00 1.00 501.00 144.00 NO
9 7 28 4 630.00 0.00 630.00 144.00 NO
9 8 28 4 756.00 0.00 756.00 144.00 NO
10 3 28 4 140.00 0.00 140.00 180.00 YES
10 4 28 4 279.00 0.00 279.00 180.00 NO
10 5 28 4 420.00 0.00 420.00 180.00 NO
10 6 28 4 560.00 0.00 560.00 180.00 NO
10 7 28 4 690.00 6.00 696.00 180.00 NO
10 8 28 4 840.00 0.00 840.00 180.00 NO
11 3 28 4 154.00 0.00 154.00 220.00 YES
11 4 28 4 306.00 1.00 307.00 220.00 NO
11 5 28 4 462.00 0.00 462.00 220.00 NO
11 6 28 4 610.00 3.00 613.00 220.00 NO
11 7 28 4 765.00 1.00 766.00 220.00 NO
11 8 28 4 924.00 0.00 924.00 220.00 NO

that, with any p, a BIBD with the same set of parameters
will still be obtained. All the LDs produced satisfied the
necessary conditions for BIBDs, hence BIBDs can be ob-
tained from them. The (15, 140, 28, 3, 4) parent BIBD led
to the production of (9, 84, 28, 3, 7), (10, 120, 36, 3, 8) and
(11, 165, 45, 3, 9) BIBDs while (5, 10, 6, 3, 3), (6, 20, 10, 3, 4)
and (7, 35, 15, 3, 5) are the BIBDs obtained from the
(7, 7, 3, 3, 1) BIBD. All the BIBDs produced are unreduced
designs and can be generalized as (v + 1, b + r + λ + 1, r +
λ + 1, k, λ + 1) where (v, b, r, k, λ) are the parameters of the
first BIBD produced. This is shown in Table IX.
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TABLE IX
GENERALIZATION OF BIBDS PRODUCED

Parent BIBD LDs BIBD Produced (v + 1, b + r + λ + 1, r + λ + 1, k, λ + 1)

(15,140,28,3,4) LD(15, 3, 9, 3),
LD(15, 3, 10, 3),
LD(15, 3, 11, 3)

(9,84,28,3,7),
(10,120,36,3,8),
(11,165,45,3,9)

(9,84,28,3,7),
(9+1,84+28+7+1,28+7+1,3,7+1),
(10+1,120+36+8+1,36+8+1,3,8+1)

(7,7,3,3,1) LD(7, 3, 5, 3),
LD(7, 3, 6, 3),
LD(7, 3, 7, 3)

(5,10,6,3,3),
(6,20,10,3,4),
(7,35,15,3,5)

(5,10,6,3,3)
(5+1,10+6+3+1,6+3+1,3,3+1)
(6+1,20+10+4+1,10+4+1,3,4+1)

TABLE II
IMPLEMENTATION OF LI’S CONDITION FOR (7, 7, 3, 3, 1) BIBD

P T R L COMBT COMBP COMTOT COMBL ANSW
3 3 3 1 4.00 0.00 4.00 3.00 NO
3 4 3 1 9.00 0.00 9.00 3.00 NO
3 5 3 1 12.00 0.00 12.00 3.00 NO
3 6 3 1 10.00 6.00 16.00 3.00 NO
3 7 3 1 15.00 3.00 18.00 3.00 NO
3 8 3 1 21.00 1.00 22.00 3.00 NO
4 3 3 1 6.00 0.00 6.00 6.00 NO
4 4 3 1 12.00 0.00 12.00 6.00 NO
4 5 3 1 18.00 0.00 18.00 6.00 NO
4 6 3 1 20.00 1.00 21.00 6.00 NO
4 7 3 1 30.00 0.00 30.00 6.00 NO
4 8 3 1 21.00 10.00 31.00 6.00 NO
5 3 3 1 7.00 0.00 7.00 10.00 YES
5 4 3 1 15.00 0.00 15.00 10.00 NO
5 5 3 1 18.00 3.00 21.00 10.00 NO
5 6 3 1 30.00 0.00 30.00 10.00 NO
5 7 3 1 30.00 3.00 33.00 10.00 NO
5 8 3 1 42.00 0.00 42.00 10.00 NO
6 3 3 1 9.00 0.00 9.00 15.00 YES
6 4 3 1 18.00 0.00 18.00 15.00 NO
6 5 3 1 24.00 1.00 25.00 15.00 NO
6 6 3 1 30.00 3.00 33.00 15.00 NO
6 7 3 1 45.00 0.00 45.00 15.00 NO
6 8 3 1 42.00 6.00 48.00 15.00 NO
7 3 3 1 10.00 0.00 10.00 21.00 YES
7 4 3 1 21.00 0.00 21.00 21.00 NO
7 5 3 1 30.00 0.00 30.00 21.00 NO
7 6 3 1 40.00 0.00 40.00 21.00 NO
7 7 3 1 45.00 3.00 48.00 21.00 NO
7 8 3 1 63.00 0.00 63.00 21.00 NO
8 3 3 1 12.00 0.00 12.00 28.00 YES
8 4 3 1 24.00 0.00 24.00 28.00 YES
8 5 3 1 36.00 0.00 36.00 28.00 NO
8 6 3 1 40.00 6.00 46.00 28.00 NO
8 7 3 1 60.00 0.00 60.00 28.00 NO
8 8 3 1 63.00 3.00 66.00 28.00 NO
9 3 3 1 13.00 0.00 13.00 36.00 YES
9 4 3 1 27.00 0.00 27.00 36.00 YES
9 5 3 1 36.00 3.00 39.00 36.00 NO
9 6 3 1 50.00 1.00 51.00 36.00 NO
9 7 3 1 60.00 3.00 63.00 36.00 NO
9 8 3 1 63.00 15.00 78.00 36.00 NO
10 3 3 1 15.00 0.00 15.00 45.00 YES
10 4 3 1 30.00 0.00 30.00 45.00 YES
10 5 3 1 42.00 1.00 43.00 45.00 YES
10 6 3 1 60.00 0.00 60.00 45.00 NO
10 7 3 1 75.00 0.00 75.00 45.00 NO
10 8 3 1 84.00 1.00 85.00 45.00 NO
11 3 3 1 16.00 0.00 16.00 55.00 YES
11 4 3 1 33.00 0.00 33.00 55.00 YES
11 5 3 1 48.00 0.00 48.00 55.00 YES
11 6 3 1 60.00 3.00 63.00 55.00 NO
11 7 3 1 75.00 3.00 78.00 55.00 NO
11 8 3 1 84.00 10.00 94.00 55.00 NO

TABLE III
COMBINATIONS GENERATED FROM LD(15, 3, 9, 3)

Report on Intersections
Comparison value p = 1 2 3 4 5 6 7 8 9 , t = 3

1 2 3 1 4 7 2 3 6 2 6 9 3 6 9 5 6 8
1 2 4 1 4 8 2 3 7 2 7 8 3 7 8 5 6 9
1 2 5 1 4 9 2 3 8 2 7 9 3 7 9 5 7 8
1 2 6 1 5 6 2 3 9 2 8 9 3 8 9 5 7 9
1 2 7 1 5 7 2 4 5 3 4 5 4 5 6 5 8 9
1 2 8 1 5 8 2 4 6 3 4 6 4 5 7 6 7 8
1 2 9 1 5 9 2 4 7 3 4 7 4 5 8 6 7 9
1 3 4 1 6 7 2 4 8 3 4 8 4 5 9 6 8 9
1 3 5 1 6 8 2 4 9 3 4 9 4 6 7 7 8 9
1 3 6 1 6 9 2 5 6 3 5 6 4 6 8
1 3 7 1 7 8 2 5 7 3 5 7 4 6 9
1 3 8 1 7 9 2 5 8 3 5 8 4 7 8
1 3 9 1 8 9 2 5 9 3 5 9 4 7 9
1 4 5 2 3 4 2 6 7 3 6 7 4 8 9
1 4 6 2 3 5 2 6 8 3 6 8 5 6 7

TABLE IV
COMBINATIONS GENERATED FROM LD(15, 3, 10, 3)

Report on Intersections
Comparison value p = 1 2 3 4 5 6 7 8 9 10 , t = 3

1 2 3 1 4 9 2 3 6 2 6 9 3 6 7 4 7 8 6 8 9
1 2 4 1 4 10 2 3 6 2 6 10 3 6 8 4 7 9 6 8 10
1 2 5 1 5 6 2 3 7 2 7 8 3 6 9 4 7 10 6 9 10
1 2 6 1 5 7 2 3 8 2 7 9 3 6 10 4 8 9 7 8 9
1 2 7 1 5 8 2 3 9 2 7 10 3 7 8 4 8 10 7 8 10
1 2 8 1 5 9 2 3 10 2 8 9 3 7 9 4 9 10 7 9 10
1 2 9 1 5 10 2 4 5 2 8 10 3 7 10 5 6 7 8 9 10
1 2 10 1 6 7 2 4 6 2 9 10 3 8 9 5 6 8
1 3 4 1 6 8 2 4 7 3 4 5 3 8 10 5 6 9
1 3 5 1 6 9 2 4 8 3 4 6 3 9 10 5 6 10
1 3 6 1 6 10 2 4 9 3 4 7 4 5 6 5 7 8
1 3 7 1 7 8 2 4 10 3 4 8 4 5 7 5 7 9
1 3 8 1 7 9 2 5 6 3 4 9 4 5 8 5 7 10
1 3 9 1 7 10 2 5 7 3 4 10 4 5 9 5 8 9
1 3 10 1 8 9 2 5 8 3 5 6 4 5 10 5 8 10
1 4 5 1 8 10 2 5 9 3 5 7 4 6 7 5 9 10
1 4 6 1 9 10 2 5 10 3 5 8 4 6 8 6 7 8
1 4 7 2 3 4 2 6 7 3 5 9 4 6 9 6 7 9
1 4 8 2 3 5 2 6 8 3 5 10 4 6 10 6 7 10

VII. CONCLUSION

In this study, we constructed some BIBDs from their parent
BIBDs using Lotto Designs which were constrained on v ≥ k,
v ≥ p, t ≤ min{k, p} and k = t. The BIBDs produced from
these LDs follow the generalization (v + 1, b + r + λ + 1, r +
λ + 1, k, λ + 1) where (v, b, r, k, λ) are the parameters of the
first BIBD produced. All the BIBDs produced are unreduced
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TABLE V
COMBINATIONS GENERATED FROM LD(15, 3, 11, 3)

Report on Intersections
Comparison value p = 1 2 3 4 5 6 7 8 9 10 11 , t = 3

1 2 3 1 5 9 2 4 6 3 4 5 3 10 11 5 7 8 8 9 11
1 2 4 1 5 10 2 4 7 3 4 6 4 5 6 5 7 9 8 10 11
1 2 5 1 5 11 2 4 8 3 4 7 4 5 7 5 7 10 9 10 11
1 2 6 1 6 7 2 4 9 3 4 8 4 5 8 5 7 11
1 2 7 1 6 8 2 4 10 3 4 9 4 5 9 5 8 9
1 2 8 1 6 9 2 4 11 3 4 10 4 5 10 5 8 10
1 2 9 1 6 10 2 5 6 3 4 11 4 5 11 5 8 11
1 2 10 1 6 11 2 5 7 3 5 6 4 6 7 5 9 10
1 2 11 1 7 8 2 5 8 3 5 7 4 6 8 5 9 11
1 3 4 1 7 9 2 5 9 3 5 8 4 6 9 5 10 11
1 3 5 1 7 10 2 5 10 3 5 9 4 6 10 6 7 8
1 3 6 1 7 11 2 5 11 3 5 10 4 6 11 6 7 9
1 3 7 1 8 9 2 6 7 3 5 11 4 7 8 6 7 10
1 3 8 1 8 10 2 6 8 3 6 7 4 7 9 6 7 11
1 3 9 1 8 11 2 6 9 3 6 8 4 7 10 6 8 9
1 3 10 1 9 10 2 6 10 3 6 9 4 7 11 6 8 10
1 3 11 1 9 11 2 6 11 3 6 10 4 8 9 6 8 11
1 4 5 1 10 11 2 7 8 3 6 11 4 8 10 6 9 10
1 4 6 2 3 4 2 7 9 3 7 8 4 8 11 6 9 11
1 4 7 2 3 5 2 7 10 3 7 9 4 9 10 6 10 11
1 4 8 2 3 6 2 7 11 3 7 10 4 9 11 7 8 9
1 4 9 2 3 7 2 8 9 3 7 11 4 10 11 7 8 10
1 4 10 2 3 8 2 8 10 3 8 9 5 6 7 7 8 11
1 4 11 2 3 9 2 8 11 3 8 10 5 6 8 7 9 10
1 5 6 2 3 10 2 9 10 3 8 11 5 6 9 7 9 11
1 5 7 2 3 11 2 9 11 3 9 10 5 6 10 7 10 11
1 5 8 2 4 5 2 10 11 3 9 11 5 6 11 8 9 10

TABLE VI
COMBINATIONS GENERATED FROM LD(7, 3, 5, 3)

Report on Intersections
Comparison value p = 1 2 3 4 5 , t = 3

1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5

TABLE VII
COMBINATIONS GENERATED FROM LD(7, 3, 6, 3)

Report on Intersections
Comparison value p = 1 2 3 4 5 6 , t = 3

1 2 3 2 3 4
1 2 4 2 3 5
1 2 5 2 3 6
1 2 6 2 4 5
1 3 4 2 4 6
1 3 5 2 5 6
1 3 6 3 4 5
1 4 5 3 4 6
1 4 6 3 5 6
1 5 6 4 5 6

TABLE VIII
COMBINATIONS GENERATED FROM LD(7, 3, 7, 3)

Report on Intersections
Comparison value p = 1 2 3 4 5 6 7 , t = 3

1 2 3 2 3 7
1 2 4 2 4 5
1 2 5 2 4 6
1 2 6 2 4 7
1 2 7 2 5 6
1 3 4 2 5 7
1 3 5 2 6 7
1 3 6 3 4 5
1 3 7 3 4 6
1 4 5 3 4 7
1 4 6 3 5 6
1 4 7 3 5 7
1 5 6 3 6 7
1 5 7 4 5 6
1 6 7 4 5 7
2 3 4 4 6 7
2 3 5 5 6 7
2 3 6

designs.
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