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Abstract—This paper presents a new method of analog fault 

diagnosis based on back-propagation neural networks (BPNNs) using 
wavelet decomposition and fractal dimension as preprocessors. The 
proposed method has the capability to detect and identify faulty 
components in an analog electronic circuit with tolerance by analyzing 
its impulse response. Using wavelet decomposition to preprocess the 
impulse response drastically de-noises the inputs to the neural 
network. The second preprocessing by fractal dimension can extract 
unique features, which are the fed to a neural network as inputs for 
further classification. A comparison of our work with [1] and [6], 
which also employs back-propagation (BP) neural networks, reveals 
that our system requires a much smaller network and performs 
significantly better in fault diagnosis of analog circuits due to our 
proposed preprocessing techniques. 
 

Keywords—Analog circuits, fault diagnosis, tolerance, wavelet 
transform, fractal dimension, box dimension.  

I. INTRODUCTION 
NALOG fault diagnosis has been an active area of 
research since the mid-1970s with significant work carried 

out at the system, board, and chip level [1-5]. The application 
of neural networks to this area is very appealing since no model 
or comprehensive examination of these effects is requred 
[6-12]. In this approach, the fault features extraction technique 
is one of the most important steps in the whole diagnosis 
process. Fractal theory has been widely used in the fault 
diagnosis of mechanical and electric power systems as a 
preprocessor and great performance have been achieved [6-11]. 
However, it is still rare that fractal theory was applied in analog 
fault diagnosis. Fractal theory is applied in fault feature 
extraction for analog circuits in [2], and good results has been 
achieved. However, the abscissa and the vertical coordinate of 
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the sampling data in plane are time or frequency, and voltage or 
the amplitute of transfer function, which are two different 
variables. Thus, directly using square grid to cover the 
sampling curves will sometimes reduce the fault diagnosis 
accuracies and even get wrong fault diagnosis results.In this 
work, normalization will be first used to the abscissa and the 
vertical coordinate. After then, the box dimension of the 
normalized data will be calculated.  

Considering the effects of the noise and tolerance, if the box 
dimensions of sampled data are directly extracted from the 
impulse response of a circuit under test (CUT) as the fault 
features, it is difficult to meet the requirements in practice. [6] 
shows that wavelet transformation is a powerful tool in 
signal-denoising. And the relevant studies [7-9] also found that 
wavelet transfomation and fractal theory are both based on 
self-similarity and are the same in the object-recognized 
process, which is a process from coarse to fine. So, in this 
paper, t he circuit’s impulse response will be first preprocessed 
by wavelet transformation. And then, use normalization and 
fractal theory to generate features for training the neural 
network. Comparison of our work with [6] in a later section 
clearly indicates the effectiveness of our proposed method and 
that our proposed method improves the accuracies of analog 
fault diagnosis.. 

The material in this paper is arranged in the following order. 
In Section II, we brieflly discuss wavelet transformation used in 
this paper. The box dimension is discussed in Section III. In 
Section IV, our proposed preprocessing techniques for 
analog-circuit fault diagnosis are discussed. Section V covers 
the neural network architecture appropriate for our analog fault 
diagnosis method. Two illustrations to demonstrate the strength 
of our diagnosis technique are given in Section VI. The 
conclusions are presented in Section VII. 

II. WAVELET TRANSFORM 
Wavelet is a limited function in time and frequency domain. 

Using wavelet function to multiply the original signal is 
actually to add a window to it. The definition of wavelet 
transformation is the innner product of different sale a and 
shift τ of mother wavelet ( )tψ , and the signals ( )x t to be 
analyzed [5], that is 
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The equivalent representation of (1) in frequency domain is 
as follows. 
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Where ( )X ω and ( )ψ ω are the Fourier transformations 

of ( )x t and ( )tψ ,respectively. 
In applying wavelet analysis to sampled signals, one needs 

to perform the downsampling operation after each level of 
decomposition to preserve the number of data points in the 
orginal signal. This simply means to include every other data 
point in the signal components (approximation and detail). 
Consequently, the number of data points in the components at 
level j approximation or detail will be reduced by a factor of 
two compared to the corresponding number of data points at 
level ( )1j − . 

III. BOX DIMENSION 
Assume that F is a non-empty and bounded set in 
nR and ( )N Fδ is the minimum number of boxes with 

maximum diameter δ ,which can cover the set F , the lower and 
inferior limits of box dimension can be defined as 

( )
0

ln
dim lim

lnB
N F

F δ

δ δ→
=

−
                            (3) 

( )
0

ln
dim lim

ln
B

N F
F δ

δ δ→
=

−
                             (4) 

If the lower and inferior limits of the box dimension are 
equal, the box dimension of F can be rewritten as 

( )
0

ln
dim lim

lnB
N F

F δ
δ δ→

=
−

                             (5) 

In order to calculate the box dimension of set F in plane 2R , 
draw the square grids with the length beingδ in plane, first. 
Then, calculate the number of the square grids at the 
intersection of set F . Finally, mark the points constituted by 
different δ and its relevant ( )N Fδ in double-logarithmic 

coordinate ( )1ln ln N Fδδ − − , which is shown in Fig.1. The 
slope of the line in Fig.1 is the approximated value of box 
dimension of F . 

1lnδ −

( )ln N Fδ

 
Fig.1. The estimation of the box dimension of F set 

 
For the fault diagnosis of analog circuits, the abscissa and the 

vertical coordinate of the sampled data in plane are time or 
frequency, and voltage or the amplitute of transfer function, 
which are two different variables. Thus, using improved 
square-grid based method to cover the sampled curves includes 
the following four steps. 

Step1. Normalize the abscissa and the vertical coordinate of 
the sampled curve and then embed the sampled curve into the 
unit squares. 

Step2. Select a group of squares with the length being mδ , 
where 1, 2, ,m M= . The maximum and minimum of mδ are 
0.2 and 2/N, where N is the number of sampled points for each 
concerned curve. 

Step 4. Use unit squares with length being mδ to cover the 
curve and calculate the number of the square mN  at the 
intersection of the curve. 

Step 5. Draw the curve of ( ) ( )ln lnm mN δ− , 
where 1, 2, ,m M= . If the concerned curve is fractal,  the 

curve constituted by the points of ( ) ( )( )ln , lnm mNδ  is a 

straight line with least-square method. The slope of strainght 
line is the box dimension. 

IV. PREPROCESSING TECHNIQUES 
Since only the output terminal is accessible for most 

application in practice, so wavelet transformation and fractal 
dimension based fault feautre extraction method are obtained 
by the calculation of CUTs’ outputs in this paper. First, 
de-noise and decompose the impulse responses of CUTs based 
on wavet decompostion. Then, calculate box dimension of the 
decomposed data according to Section III. The block diagram 
of the feature extraction process is listed in Fig.2. 

CUT
Impulse 

response 
extraction

A/DStimulus
N levels of 

wavelet 
decomposition

Noise 
Elimination

Box 
dimension 
calculation

 
Fig.2. The block diagram of fault feature extraction process 

It can be seen from Fig.2 that the fault feature extraction 
process includes the following steps: 

1)Perform sensitivity analysis on CUTs to determine fault 
classes. 

2)Denoise and decompose the impulse responses of the 
CUTs for each fault classes. 

3) Calculate the box dimensions of decomposed signals. 

The box dimension are then fed to a neural network as inputs 
for further classification. 

V. NEURAL NETWORK CLASSIFIER DESIGN 
The neural network selected in our work is multilayer 

back-propagation (BP) neural network, which is mainly used in 
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pattern recognition, function approximation, classification, etc. 
The structure of BPNN is shown in Fig.3, where 

[ ]1 2, , ,r RX x x x x= , 1,2, ,r R=  is the input vector. 

R is the number of the input-layer neurons; 1irω is the weight 
between i th  hidden-layer neuron and r th input-layer neuron; 

2 jiω  is the weight between j th output-layer neuron and i th 

hidden-layer neuron.  
[ ]1 2 11 , , , , ,i SB b b b b= , 1, 2, , 1i S= is the bias vector of 

hidden-layer neurons; 1S is the number of hidden-layer 

neurons; 1 2 22 , , , , ,j SB b b b b⎡ ⎤= ⎣ ⎦ , 1,2, , 2j S=  is the 

bias vector of output-layer neurons; 2S is the number of 
output-layer neurons; The activation functions of hidden- and 
output-layer neurons are 1f and 2f , which are sigmoid and 

linear functions, respectively. ( )1 2 2, , , SY y y y=  and 

( )1 2 2, , , ST t t t= are the actual and target output vectors of 
the network. 

∑

∑

∑

∑

∑

∑

1x

2x

Rx

1y

2y

1f

1f

1f

2f

2f

2f

1Sb

1b

2b

i
2Sb

j

2b

1b
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Fig.3. The structure of BP neural network 

VI. EXAMPLE CIRCUITS AND METHOD APPLICATION 

A. Sample Circuits and Faults 
In order to verify the correctness of our proposed method, 

the softwares of Matlab 7.1 and OrCAD10.5 are adopted to 
simultate the circuits in Figs.4 (a) and (b). 
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(a) 25kHzSallen-Key bandpass filter 
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(b) Four op-amp biquad high-pass filter 

Fig.4. The circuit under test 
The nominal values for the components in Figs.4 (a) and (b) 

are shown in the Figures. A test signal is applied to the CUTs . 

The frequency responses with the components set to their 
nominal vaules are shown in Figs.5 (a) and (b). The nomimal 
centre frequency and 3db cut-off frequecy of the two CUTs are 
25kHz and17.60667kHz, which are obtained by performance 
index analysis. The impulse response of these circuits with 
resistors and capacitors allowed to vary within tolerances of 5% 
and 10% belongs to the no-fault ( NF ) class. 

 

 
(a)The frequency response of Fig.4(a) (b) The frequency response of 

4(b) 
Fig.5. The amplitude-frequency distribution of the CUTs 

 
A component sensitivity analysis is performed on the CUT 

in Fig. 4(a) to identify critical single faults. The sensitivity 
ranking of the discrete components to centre frequency is : 

3R , 2C , 2R , and 1C . So, when 3R , 2C , 2R , and 1C are 50% 
higher or lower than the nominal values shown in Fig4(a), we 
get the fault classes 3R ↑ , 3R ↓ , 2C ↑ , 

2C ↓ , 2R ↑ , 2R ↓ , 1C ↑ , 1C ↓ , and NF . In this notation, 
↑ and ↓ stand for high and low, respectively. An input pulse 
with 1 0V = , 2 5V V= , 0TD = , 0.1TR sμ= , 1TF sμ= , 

10PW sμ= , and 3PER sμ=  to the filer input are applied. 
The output node (out) is utilized to obtain the circuit impulse 
response. 

The second circuit studied in this paper is more complicated 
and is shown in Fig.4 (b). This is a four-operational-amplifier 
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biquad high-pass filter. The fault classes 
include 1C ↑ , 1C ↓ , 2C ↑ , 2C ↓ , 1R ↑ , 1R ↓ , 2R ↑ , 2R ↓ , 

3R ↑ , 3R ↓ , 4R ↑ , 4R ↓ , and NF ., where ↑ and ↓ stand for 
higher and lower than nominal values by 50%,respectively. 

B. Feature Extraction 
When one component are 50% higher or lower than the 

nominal values shown in Figs.4(a) and (b) and the other 
elements of the CUTs fall into their tolerance ranges, the fault 
features can be extracted by the analysis of the impulse 
response of the CUTs, which constitutes the following. 
1) For the nominal circuits, conduct transient analysis on the 
CUT under each fault classes to obtain the impulse response of 
the CUT. Denoise and decompose the impulse response by 
wavelet decomposition. Calculate the box dimensions of the 
decomposed signals using the software of Matlab7.1. 
2) For the tolerance circuits, conduct Monte Carlo and transient 
analyses on the CUT to obtain the impulse response of the 
CUT. Denoise and decompose the impulse response by wavelet 
decomposition. Calculate the box dimensions of the 
decomposed signals using the software of Matlab7.1. The box 
dimensions obtained in (1) and (2) will be fed to the neural 
network as its inputs. 

C. Neural Network Classifier 
Based on the aforementioned analysis, the network 

architecture can be designed to have six inputs, nine outputs, 
and eighteen hidden neurons for the CUT in Fig.4(a); and six 
inputs, 13 outputs, and 26 hidden neurons for the CUT in 

Fig.4(b). Assume that T={0,…,0,1,0,…,0}is the target ouput 
vector. When j th fault class feature occurs, jT is equal to 1, and 

the other outputs are equal to zero. The features, which are 
extracted by performing one time of transient analysis for the 
nominal circuit and 40 times of Monte Carlo and transient 
analyses on the tolerance circuits, are sent to the neural network 
in batch to adjust its weights and biases, that is, the diagnosis 
errors are calculated after all the features sent to the neural 
network. The weight adaptation equation is given by: 

( ) ( ) ( ) ( )1
, ,

1 1

ˆ
N Nr r rr

p p k p k k
k k

eη −

= =
Δ = Δ =∑ ∑W W h ( )1, 2, ,r R=     (6) 

Where N is the number of features; ( )
,
r

p ke is the difference of r th 

feature between j th actual output ( )
,
r

p ky and the target 

output ( )
,
r

p kt , that is, ( ) ( ) ( )
, , ,
r r r

p k p k p ke t y= − ; η is the learning rate 

and 0 1η< < ; and ( )1ˆ r
k

−h is the output vector in ( )1r − th 
hidden-layer. 

D. Results and Analysis 
Using the proposed method, we have studied the fault 

diagnosis of analog circuits in Figs.4(a) and (b). Parts of the 
simulation data of the two circuits without tolerance are listed 
in Tables I (a) and (b) and Figs.6 and 7. These are acheived by 
using 5 levels of haar wavelet decomposition to denoise and 
decompose the circuits’ outputs. 

  
(a) The outputs and denoised outputs of Fig.4 (a) with NF  

 

 
(b) The five levels of wavelet decomposed signals of Fig.4 (a)with NF  



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:4, No:8, 2010

1104

 

 

 
(c) The outputs and denoised outputs of Fig.4 (a) with 2R ↑  

 
    (d) The five levels of wavelet decomposed signals of Fig.4 (a) with 2R ↑  

Fig.6. The outputs, denoised outputs and their corresponding wavelet decomposed signals in Fig.4 (a) with parts of fault classes 

 
(a) The outputs and denoised outputs ofFig.4 (b) 1R ↑  

 
(b) The five levels of wavelet decomposed signals of Fig.4 (b) 1R ↑  

 
(c) The outputs and denoised outputs ofFig.4 (b) with 4R ↓  
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 (d) The five levels of wavelet decomposed signals of Fig.4 (b)with 4R ↓  

Fig.7. The outputs, denoised outputs and their corresponding wavelet decomposed signals in Fig.4 (b) with parts of fault classes 
 

TABLEI. THEMAXIMUM COEFFICIENTS OF THE DECOMPOSED IMPULSE RESPONSE 
 

(a) THE MAXIMUM COEFFIENTS OF THE DECOMPOSED IMPULSE RESPONSES FOR THE NOMINAL CIRCUIT OF FIG.4 (a) 
Maximun Coeffients 

Fault Classes 
Max(ca5) Max(cd5) Max(cd4) Max(cd3) Max(cd2) Max(cd1) 

NF  0.0002 0 0 0 0 0 

3R ↑  0.0989 0.0686 0.0706 0.1026 0.0197 0.0127 

3R ↓  0.0011 0 0 0 0 0 

2C ↑  0.0002 0 0 0 0.0001 0 

2C ↓  0.0083 0.0035 0.0045 0.0049 0.0017 0.0008 

2R ↑  0.0002 0 0 0 0 0 

2R ↓  13.0055 26.2243 15.2669 5.8104 3.2883 1.5156 

1C ↑  0.0002 0 0 0.0001 0.0002 0.0001 

1C ↓  0.0002 0 0 0 0 0 

   
(b) THE MAXIMUM COEFFIENTS OF THE DECOMPOSED IMPULSE RESPONSES FOR THE NOMINAL CIRCUIT OF FIG.4 (a) 

 
      Maximum Coefficients 
Fault Classes 

Max(ca5) Max(cd5) Max(cd4) Max(cd3) Max(cd2) Max(cd1) 

NF  2.8735 10.9022 6.5145 -2.7182 -1.2174 0.2782 

1C ↑  2.8792 13.8682 7.4977 4.5818 -1.1745 0.6577 

1C ↓  -2.3511 1.7973 -5.3919 1.9863 -0.8899 -0.2941 

2C ↑  29.4238 5.1900 8.8482 -2.4474 1.6001 0.6525 

2C ↓  2.8791 10.0066 8.0901 -3.2732 1.3476 -0.6622 

1R ↑  29.4204 5.1904 8.8483 -2.4479 1.6001 0.6528 

1R ↓  -2.8941 5.1696 -2.7607 -2.3636 -0.5615 0.4617 

2R ↑  20.7859 -8.1281 -10.2783 -2.9137 -1.444 0.4612 

2R ↓  -19.0801 -12.1212 7.8653 2.6182 -1.1621 -0.6695 

3R ↑  -10.8898 -5.2036 7.4581 1.8889 0.9242 -0.3608 

3R ↓  35.9117 -15.612 7.0667 -3.2697 1.2145 0.7852 

4R ↑  -9.5158 8.2452 -3.9897 -1.5114 -0.8221 -0.3336 

4R ↓  29.4238 5.1902 8.8482 -2.4484 1.6001 0.6526 

In Figs.6 and 7, the data in horizontal and vertical axis are all 
normalized. As shown in Figs.6 and 7, it can be seen that using 
haar wavelet to denoise the impulse responses has achieved 
great performance. In addition, the decomposed signals have 
fractal characteristics, so that fractal theory can be applied on 
the issues. In Table I, Max (ca5), Max (cd5), Max (cd4),  Max 
(cd3), Max (cd2) and Max (cd1) represent the maximum ones 
of the wavelet coefficients ca5, cd5, cd4, cd3, cd2 and cd1. The 
data in Tables I (a) and (b) show that the fault features 

of NF , 2R ↑  and 1C ↓  extracted by wavelet decomposition 
are all the same, which means that these faults cannot be 
uniquely identified. In addition, the features of 2C ↑ and 1C ↑  
are very close to those mentioned above, which means the two 
fault classes cannot be identified, either.  

The features for the nominal circuits of Figs. 4(a) and (b) 
extracted by wavelet decomposition and box dimension are 
listed in Tables II (a) and (b). 
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TABLE II BOX DIMENSIONS FOR EACH LEVEL OF WAVELET DECOMPOSITION 
 

(a) BOX DIMENSIONS FOR EACH LEVEL OF WAVELET DECOMPOSITION FOR THE CIRCUIT IN FIG.4(a) 
        Box Dimension 
Fault Classes 

BD(ca5) BD(cd5) BD(cd4) BD(cd3) BD(cd2) BD(cd1) 

NF  1.2729 1.4227 1.5337 1.6911 1.7270 1.9335 

3R ↑  1.2295 1.3959 1.6959 1.5295 1.6244 1.8704 

3R ↓  1.3307 1.3307 1.4206 1.4591 1.6550 1.8658 

2C ↑  1.2604 1.2604 1.4783 1.7041 1.7523 1.8743 

2C ↓  1.0206 1.2266 1.7446 1.8614 1.8766 1.8902 

2R ↑  1.6826 1.8295 1.8296 1.9024 1.9307 1.9535 

2R ↓  1.1911 1.2244 1.5229 1.5937 1.6125 1.6572 

1C ↑  1.1911 1.4478 1.5922 1.5923 1.7250 1.8922 

1C ↓  1.0704 1.1534 1.2763 1.3512 1.3652 1.6602 

 
 (b) BOX DIMENSIONS FOR EACH LEVEL OF WAVELET DECOMPOSITION FOR THE CIRCUIT IN FIG.4 (b) 

       Box Dimension 
Fault Classes 

BD(ca5) BD(cd5) BD(cd4) BD(cd3) BD(cd2) BD(cd1) 

NF  1.1534 1.2922 1.2922 1.2963 1.5091 1.7074 

1C ↑  1.0244 1.0244 1.1911 1.3512 1.3512 1.3922 

1C ↓  1.1920 1.4829 1.7426 1.7425 1.8534 1.8534 

2C ↑  1.2244 1.2704 1.3704 1.5436 1.7534 1.9091 

2C ↓  1.1911 1.2337 1.3370 1.4669 1.5643 1.6335 

1R ↑  1.2602 1.2922 1.5841 1.6743 1.7630 1.7756 

1R ↓  1.1746 1.3133 1.3704 1.3837 1.6922 1.8478 

2R ↑  1.1614 1.3478 1.4244 1.4333 1.6922 1.9911 

2R ↓  1.1911 1.5121 1.6743 1.7604 1.7959 1.8819 

3R ↑  1.1917 1.2244 1.2911 1.2436 1.2763 1.3223 

3R ↓  1.1614 1.2434 1.2917 1.3074 1.4550 1.7074 

4R ↑  1.2206 1.3244 1.3922 1.4370 1.5920 1.6922 

4R ↓  1.2917 1.2922 1.5304 1.5418 1.6922 1.8307 

In Table II, BD(ca5), BD(cd5), BD (cd4), BD (cd3), BD 
(cd2) and BD (cd1) represent the box dimensions of the 
wavelet coefficients ca5, cd5, cd4, cd3, cd2 and cd1. The data 
in TablesII(a) and (b) show that the fault features of different 
fault classes are different, which means that these faults can be 
uniquely identified. 

For circuits with tolerance, ambiguity may occur. For the 
circuits in Figs.4(a) and (b), resistors and capacitors are 
assumed to have tolerance values of 5% and 10%, respectively. 
The ambiguity groups for different fault classes of the circuits 
in Figs.4(a) and (b) can be obtained by 40 times of Monte Carlo 
analysis, respectivey. Our simulation results show that all the 
nine (including normal) fault classes in the circuit of Fig.4(a) 
and all the thirteen fault classes in the circuit of Fig.4 (b) are 
falling into different ambiguity groups, and thus, the fault 
identifiability of the circuit are both 100%. The method in [7] 
cannot distinguish between NF and for the circuit in Fig.4(a). 
Obviously, the method proposed in this paper has a higher 
correct fault recognition rate. 

  
(a) The training curves of the neural networks for the circuit in Fig.4 
(a) 
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 (b)�The training curves of the neural networks for the circuit in Fig.4 
(b) 

Fig.8. The training curves 
The performance analysis of the neural network classifier of 

the circuits in Figs.4(a) and (b) are shown in Figs.8(a) and (b). 
Figs.8 (a) and (b) show that the training goals are obtained 
through 436 and 2848 epochs. Figs.9 (a) and (b) illustrate that 
the percentages for wrong diagnosis are less than 1% and 1.5% 
for the circuits in Figs.4 (a) and (b) when the noise is lower than 
0.3. From the Figs.9 (a) and (b), we can see that the networks 
can reach at least 99% and 98.5% of accurate diagnoses for the 
circuits in Figs.4 (a) and (b). 

 
(a) The relationship of diagnosis error for inputs with noise for the 

circuit in Fig.4(a) 

�  
 (b) The relationship of diagnosis error for inputs with noise for the 

circuit in Fig.4(b) 
Fig.9. The relationship of diagnosis error for inputs with noise 

In [1], a three-layer BP neural network without any 
preprocessors was used to perform diagnosis on the CUT in 
Fig.4 (a). The network has 49 inputs, ten first-layer neurons, 
and ten second-layer neurons, resulting in a total adjustable 
parameter of about 659(49X10+10X10+49+10+10). The 
training of the network will consume a lot of computing time. 
Using wavelet decomposition and box dimension as  
preprocessors for the inputs of the neural network, we need 
only six inputs, eighteen first-layer neurons, and nine outputs 
for the circuit in Fig.4(a), and there are only about 303 
(6X18+18X9+6+18+9=303) parameters to be adjustable. Thus, 
the number of weights and biases of the network in this paper is 
reduced, which directly leads to shorter training time.  

The method in [6] cannot distinguish 
between 1R ↑ and NF , 2C ↓ and 4R ↑ for the circuit in Fig.4(a), 
and has 97% correct classification for the circuit in Fig.4(b). 
However, our trained neural networks has 99% correct 
classification for the test data extracted from the circuit of Fig.4 
(a) and only misclassified three test data out of the 40 test data 
for 2C ↑ in the circuit of Fig.4 (b). Also, our proposed method 
achieves 98.5% accuracy in classifying fault components for 
the circuit in Fig.4(b). Obviously, compared with [6], the 
proposed method in this paper has a higher correct fault 
recognition rate.  

VII. CONCLUSION 
The back-propagation neural networks with wavelet 

transformation and fractal dimension as preprocessors to fault 
diagnosis of analog circuits have been applied in this paper. 
Our study indicates that the proposed preprocessing techniques 
have a significant impact on analog fault diagnosis due to the 
selection of an optimal number of relevant features. This leads 
to neural network architectures with minimal size that can be 
trained efficiently and carry out fault diagnosis with a higher 
degree of accuracy. 
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