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Abstract—Theleast mean square (LM S) algorithmisoneof the
most well-known algorithms for mobile communication systems
duetoitsimplementation simplicity. However, the main limitation
is its relatively slow convergence rate. In this paper, a booster
using the concept of Markov chains is proposed to speed up the
convergence rate of LMS algorithms. The nature of Markov
chains makes it possible to exploit the past information in the
updating process. Moreover, since the transition matrix has a
smaller variance than that of the weight itself by the central limit
theorem, the weight transition matrix converges faster than the
weight itself. Accordingly, the proposed Markov-chain based
booster thus has the ability to track variations in signal
characteristics, and meanwhile, it can accelerate the rate of
convergence for LM Salgorithms. Simulation results show that the
LM S algorithm can effectively increase the convergence rate and
meantime further approach the Wiener solution, if the
Markov-chain based booster is applied. The mean square error is
also remar kably reduced, while the conver gencerateisimproved.
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I. INTRODUCTION

N the field of adaptive signal processing, the least-mean

square (LMS) is an extensively explored algorithm due to its
implementation simplicity [1]-[2]. The LMS algorithm has been
widely used in mobile communications. However, convergence
rate is its main limitation [3]-[4]. That is, the LMS algorithm has
conflicting requirements of small step-size parameter to reduce
mis-adjustment and large step-size parameter to achieve fast
convergence.

Methods used to address the issue of convergence rate can be
classified into two  categories: time-domain  and
transform-domain methods. In the time domain, researchers
have constantly looked for new methods of selecting step sizes
to improve convergence rate. The most commonly used scheme
is the gear shifting approach [3] that utilizes a large step size
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during the transient state and then shifts to a smaller one during
the steady state. Other important time-domain approaches are
variable step-size LMS algorithms [5]-[6]. The idea is to make
step-size data-dependent. However, when the input signal is
highly colored, the convergence rate of an LMS algorithm tends
to be slow. The literatures in [7]-[8] alleviate the correlation of
the input signal by pre-whitening it using one from a number of
transforms. Among these transform-domain methods, the
frequency-domain  versions are more often used.
Frequency-domain LMS algorithms can increase the speed of
convergence for broadband signals [9]-[10].

It is obvious that the existing methods mentioned above do
not exploit the statistics of the past information in the updating
process. In this work, a novel convergence accelerator based on
the concept of Markov chains is proposed to speed up the
process of reaching the steady-state LMS weights. In the
meantime, the mean square error (MSE) can be further
improved during the steady-state epoch. The nature of Markov
chains makes it possible to exploit the successive updates of
each LMS weight to improve the convergence rate and MSE.
The excess mean square error (EMSE) of an LMS algorithm is
proportional to the value of step size [3]-[4]. For a specific step
size, the weights of an LMS algorithm will eventually get into
the steady-state period, that is, each weight of the LMS
algorithm stochastically fluctuates within a certain range. We
thus refer this phenomenon to fluctuation steady state (FSS). An
important feature of the proposed boosting scheme is that it
utilizes the weight information when the LMS algorithm gets
into the FSS. Based on the concept of Markov chains, we divide
the fluctuating range of each weight into segments and let each
segment represent a state. Then the transition matrix of each
weight can be constructed separately through successive
updates of the weight value. Since the transition matrix has a
smaller variance than that of the weight itself by the central limit
theorem (CLT), the weight transition matrix converges faster
than the weight itself. Therefore we are motivated to take
advantage of the Markov-chain concept to speed up the
convergence rate through finding the probability vector of a
weight from its transition matrix.

The rest of this paper is organized as follows. In Section II, a
brief review of the LMS algorithm is presented, and
subsequently we explain how the concept of Markov chains can
be applied to the LMS algorithm to speed up the convergence
rate. Then the Markov-chain based convergence booster is
proposed in Section III. The related implementation techniques
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are presented in Section IV. Finally simulation results and
conclusions are given in Sections V and VI, respectively.

II. THELMSALGORITHM AND APPLICATIONSOF M ARKOV
CHAINS

A. The LMSAlgorithm

Adaptive filtering algorithms are used to estimate a set of
parameters of a system model. The most popular system model
is the linear model with a transversal structure. Let the set
{c(n),i=0,1,..,M-1} denotes the M weight values of the filter
at discrete time N. The tap inputs are assumed wide-sense
stationary (WSS) and denoted by x(n) , x(n-1) ,..., and
x(n—M —1). Viewing the tap input x(n) as the current value of
the filter input, the remaining M —1 tap inputs represent the
past values of the filter input. The output y(n) at some discrete
time N is used to provide an estimate of the desired response at
discrete time n denoted by d(n).

The filter output at discrete time n is described by the
following equation:

y(m)=3", e (n)x(n-i) M
The above equation can be written in vector form as
y(n)=x"(n)e(n), @
where

x(n)=[x(n),x(n-1),...x(n—M fl)JT, (3)
c(n)=[c,(n).¢,(n)sscy, ()]’ “4)

and the superscript ' signifies the matrix transpose.
The prediction error g(n) is expressed as the difference

between the desired response and the filter output:
e(n)=d(n)-x"(n)c(n). (5)
Then the weight vector of an LMS algorithm is updated
according to the following iterative formula:
c(n+1)=c(n)+ux(n)e(n), Q)
where O is the step-size parameter.

B. Applications of Markov Chains

The Markov chain is a stochastic process where the transition
of'an object can be classified into a number of states. The object
may switch from the current state i to another state j in a fixed
interval of time with a transition probability P;;. The probability
of occurrence of the object in each state from the previous time
to the current time can be established through a transition
matrix. During the FSS period, the transition matrix between
successive updates of a weight is constructed by

I:%0 P(n o R) S-1
A= P}o Rl F:.S—l . (7)
PS—I 0 PS—I 1 Ps—1 S-1

where Sdenotes the number of states of the Markov chain. The
transition probability Pj; is obtained by counting the number of
occurrences of the object according to the following formula:

R=1 /Zs fiss ®)

where fjj is the number of occurrences of the weight from state i
to state j.

The problem with an LMS algorithm is that the statistical
behavior of the past information is not used during the updating
process. An important feature of the proposed accelerating
scheme is that it exploits the successive weight information
when the LMS algorithm gets into the FSS epoch. During the
FSS period, each weight moves about within a certain range.
For each weight of an LMS algorithm, we divide the range into
segments of equal length and let each segment represent a state.
Then the transition matrix of each weight can be established
through its successive updates individually and independently.
Consider a certain weight of an LMS algorithm, and assume that
the population, with finite mean { and standard deviation ¢,
describes the stochastic behavior of successive updates of the
weight during the FSS period.

The fundamental idea of the proposed scheme is based on the
observation that the transition probability Pj; reaches the steady
state faster than that of the weight itself. This can be observed
from the CLT, which simply states that if n samples are drawn
from the population, then the sample mean can be approximated
by a random variable having a normal distribution with mean {J
and sample standard deviation & = 5/+/n . Here the standard

deviation ¢ represents the fluctuation extent of successive
updates of the weight itself during the FSS period.

In (6), the step size parameter O is a constant that governs the
stability and convergence rate. A large step size speeds up the
rate of convergence, but at the same time the standard deviation
¢ of the population is increased, together with the EMSE. The
EMSE is defined by

E[lemF]-3,, ©)
where E[] stands for expectation, and Jy;, is the minimum

mean square error (MMSE) for the prediction error. We can
further obtain the EMSE as follows [3]:
EMSE = tr[K -R] ~ utr[R]J (10)

where tr].]denotes the trace of a square matrix, R isthe M xM

min >

tap input autocorrelation matrix and K is the M xM tap error
covariance matrix, defined by

K :E[(c—c*)(c—c”)T]. (1

Here C is the M x1 weight vector defined in (6) and ¢’ is the
corresponding vector of the Wiener solution. It is observed that
the weight vector equals the corresponding Wiener vector c,
when the value of EMSE is zero. Therefore the Wiener vector
can be reached only when the LMS algorithm employs an
infinitesimally small step size O. However, such an
infinitesimally small step size is infeasible in the real
application. Therefore eventually, a weight will stochastically
fluctuate around the corresponding Wiener solution with an
extent proportional to the value of step size O.
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III. THE MARKOV-CHAIN BASED CONVERGENCE BOOSTER

The well-known rule of the LMS algorithm [3] states that the
LMS algorithm can converge in the mean square error (MSE), if
the state-size parameter O satisfies the following condition:

0<pu<2/t[R]. (12)

The proposed boosting scheme is applied at the moment
when the LMS algorithm gets into the FSS. Consider a certain
LMS tap, and assume that its successive weight values are
restricted between R, and R,,x during the tap updating process
in the FSS epoch. In next Section we will discuss the issues of
how to determine both the instant of time when the FSS arrives
and the associated fluctuation range [R . ,R 1. We divide the

range into S segments of equal length, and each of which
represents a state. Therefore the state quantum g is:

=Ry~ Rin/S- (13)
The number of states, S for the Markov chain is determined
by the required precision of the state quantum. Let dy and Oy,
denote lower bound and upper bound of the kth state,
respectively. The state boundaries are seen to be
d =R, +k-q k=01,.S-1. (14)
The number of occurrences of the weight from state i to state j is
updated at each iteration of the LMS algorithm. At the end of the
training period, the weight transition matrix A is constructed
according to (7).
Let ®=[gp,,p,...ps,]" denote the state-value vector, in
which ¢, is the representative value of state k. The probability

vector p of the weight can be obtained from the established
transition matrix A. Then the booster speeds up the convergence
rate by forcing this weight to be the following booster value
c=p'®=3"""por (15)
where py, the kth element of p, is the steady state probability of
state k. The convergence booster can be incorporated with the
existing LMS algorithms [5]-[6] mentioned early. Thus the
computation time is saved. The flow diagram of the LMS
algorithm intermixed with the booster is given in Fig. 1.

It is worth mentioning that the booster value in (15) is a
weighted sum of past weight updates. Therefore the
Markov-chain based booster has the ability to track variations in
signal characteristics. In other words, the proposed booster can
speed up convergence rate of an LMS algorithm.

IV. IMPLEMENTATION | SSUESOF THE M ARKOV-CHAIN
BASED BOOSTER

A. The Mean Sguare Successive Difference Estimator

The proposed booster scheme is employed at the moment
when the LMS algorithm gets into the FSS. Therefore it is
necessary to devise a method to determine this moment. We
utilize a simple but effective estimator to track the trend of
weight variance during the successive updates. The estimator is
the mean square successive difference estimator (MSSDE) [11].

| Start with a step size

The LMS

algorithm
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transient state 7

Fluctuating steady

Eeduce the
step size 4
4 Yes
Setup
Markov chains
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Caculate the booster values Update 7, at the end

and force each weight of the
LMS algorithm to be its _
respective booster value. LM algorithm

I 1

of iteration of the

No

nd of training
sequence?

Fig. 1 The flow chart of the Markov-chain based LMS algorithms

B. The Fluctuation Range

Let ¢ denote the value of ¢ at the instant while the LMS
algorithm just gets into the FSS. Then the lower bound and
upper bound of the fluctuation range can be respectively
determined as

Rin =€ —mo, and R

where mis a positive constant. By the Chebychev’s inequality, a
universal bound on the deviation ‘C. _q‘ in terms of o, is:

—¢+mo,, 22)

max

P(lc -g|=mo, ) <1/m?, (23)
where P(.) stands for probability. For m= 2 and 3, we have
P(jc —G|>20, )<025, and P(|c -¢|> 30, )<0.11, (24)

so there is at least 75% and 89% chance that the weight ¢; will be
within 20, and 30}; of o during the FSS period, respectively.

In[12], Gosh and Meeden shown that Chebychev’s inequality is
very conservative. Thus it is enough to set the value of mto be 3.
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V. SIMULATION

A. Mod€

We consider a first-order autoregressive (AR) process f (n),

described by the difference equation:

f(n)=af (n-1)+w(n), (25)
where a is the parameter, which is also the Wiener solution of
the LMS algorithm, and W(n) is a zero-mean Gaussian white

process with variance o-vzv. Assume that the AR process f (n)
with the variance of 57 is independent of the noise process

w(n). Then we have 52 = (1_az)g$. The LMS algorithm to

estimate the parameter a is given by
c(n+1)=c(n)+uf(n-1)e (n), (26)
where Q is the step-size parameter and g, (n) is the prediction

error of defined as
e (n)=f(n)-c(n)f(n-1). @7
We further define the estimation error at iteration n as the
difference between the parameter a and tap value at iteration n:
e,(n)=a-c(n). (28)
Invoking the independence assumption, the ensemble average
of the squared prediction error at iteration n for the AR
process f (n) is given by [3]:

3(n)=(o} - 02 (1+0.5u0})) (1- uo )" + 02 (1+0.5u07 ), (29)

and the corresponding MMSE for the prediction error is
obtained as follows:
J,.. =0l (30)

According to (21), the weight variance is approximated as

ol ~ oy, (31)
Thus the lower bound and upper bound of the fluctuation range
are determined as

Ry, =¢—mJuo,, and R, =C+mJuc,,  (32)
where ¢ is the value of the tap C at the instant while the LMS
algorithm just gets into the FSS.

B. Results

We evaluate the proposed Markov-chain based booster for
the LMS algorithm by computer simulations. For the first-order
AR process, the parameter a is 0.99 and unless otherwise stated,
the noise variance is assumed 0.1. The step-size parameter [

for the LMS algorithm is 0.05. The number of states for the
Markov chain is 6. The following results are obtained by
ensemble averaging over 100 independent realizations.

Now, we show both the convergence rate and the MSE
improved by the proposed booster, assuming that the value of
Ngis 10. We start to establish the weight transition matrix for the
proposed convergence accelerator when the LMS just gets into
the FSS epoch. Every 100 iterations, the booster speeds up the
convergence rate of the weight by forcing this weight to be the
booster value calculated according to (15). Fig. 3 shows the
weight updating process for the LMS algorithm with and

without the proposed convergence booster. It is apparent that
the LMS algorithm can effectively improve the convergence
rate and meantime further approach the Wiener solution, if the
Markov-chain based booster is applied. In Fig. 4, we show the
MSE of the estimation error for the parameter a as a function of
noise variance. As expected from the previous result of Fig. 3,
the MSE is also remarkably reduced, while the convergence rate
is improved.
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Fig. 2 Rate of convergence improved by the proposed booster
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Fig. 3 MSE of the estimation error improved by the proposed
booster

VI. CONCLUSIONS

We have proposed a convergence booster based on the
concept of Markov chains to accelerate the rate of convergence
for LMS algorithms, and meantime approach the Wiener
solution. The booster is employed at the moment when the LMS
algorithm gets into the FSS. An MSSDE estimator has been
proposed to determine the instant when the LMS algorithm
enters the FSS. We also formulated the associated fluctuation
range. Exploiting the past information in the updating process,
and the fact that the transition matrix has a smaller variance, the
proposed booster enables the LMS algorithm to track variations
in signal characteristics, and improve the convergence rate.
Simulation results showed that the proposed convergence
accelerator effectively improves both the convergence rate and
MSE of the estimation error for the LMS algorithm.
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