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Abstract—In this paper, we propose a single sample path based 

algorithm with state aggregation to optimize the average rewards of 
singularly perturbed Markov reward processes (SPMRPs) with a 
large scale state spaces. It is assumed that such a reward process 
depend on a set of parameters. Differing from the other kinds of 
Markov chain, SPMRPs have their own hierarchical structure. Based 
on this special structure, our algorithm can alleviate the load in the 
optimization for performance. Moreover, our method can be applied 
on line because of its evolution with the sample path simulated. 
Compared with the original algorithm applied on these problems of 
general MRPs, a new gradient formula for average reward 
performance metric in SPMRPs is brought in, which will be proved 
in Appendix, and then based on these gradients, the schedule of the 
iteration algorithm is presented, which is based on a single sample 
path, and eventually a special case in which parameters only 
dominate the disturbance matrices will be analyzed, and a precise 
comparison with be displayed between our algorithm with the old 
ones which is aim to solve these problems in general Markov reward 
processes. When applied in SPMRPs, our method will approach a fast 
pace in these cases. Furthermore, to illustrate the practical value of 
SPMRPs, a simple example in multiple programming in computer 
systems will be listed and simulated. Corresponding to some practical 
model, physical meanings of SPMRPs in networks of queues will be 
clarified. 
 

Keywords—Singularly perturbed Markov processes, Gradient of 
average reward, Differential reward, State aggregation, Perturbed 
close network.  

I. INTRODUCTION 
ARKOV chains are widely applied in modeling many 
stochastic systems, such as systems in communication 

networks, finance system, operation research and many other 
applications. Meanwhile, Markov Reward Processes (MRPs) 
or Markov Decision Processes (MDPs) are brought to solve 
problems in these models such as optimization for their 
performance. The theory of MRPs or MDPs is a mathematical 
framework for modeling sequential decision tasks, which  
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becomes very popular in the field of intelligent computing and 
artificial intelligence currently, especially when these Markov 
models are involving with a large scale state spaces. Today, 
more and more methods are proposed to solve these problems. 
One class of these algorithms for optimization of MRPs is 
based on the simulation of single sample paths. To concentrate 
our paper on methods based on policy parameterization and 
gradient improvement, P. Marbach and J. N. Tsitsilis [1] 
brought the concept of Markov Reward Processes, created and 
described a popular simulation-based method, displayed the 
whole schedule of this algorithm, and modified this algorithm 
into a new way with faster updating. 

However, dimensions of state spaces in these models are 
often too large for our normal algorithms. Hence and forth, the 
computing of optimization or the searching of the best strategy 
will waste a lot of time and memory saving. In these models, 
obtaining a desired optimal control parameters or policies can 
be quite intensive and the way to solve MRPs or MDPs with a 
large state space is a challenging issue at present. Till now, the 
results of effective algorithms for general cases are far from 
satisfied, but armed with some extra information, such as 
structures of our models, or certain states with its cost-to-go 
some effective approaches can be obtained to simplify these 
problems appropriately. The aim of this paper is to present an 
algorithm to optimize a class of MRPs with large state spaces, 
in which underlying Markov chains have hierarchical 
structures and are called singularly perturbed Markov reward 
processes (SPMRPs). The asymptotical properties of these 
singularly perturbed Markov processes (SPMRs) and the 
properties of the averaging reward of them are throughout 
studied by G. Yin and Q. Zhang in [2] and [5], and M. Abbad 
and J. A. Filar in [3] and [4], respectively. Far from difficulties 
just generated from searching one of best policy for the 
optimization of performance of SPMRPs with large scale state 
space, the hierarchical structures in SPMRPs also lead to 
two-timescale of sample paths generated by these processes, 
that is to say, the transition among some special subsets of 
state spaces will take place more slowly than the transition 
among states in these subsets. This property also makes our 
recurrent state in the general algorithm in [1] occurs more 
infrequently and the sparser occurrence of recurrent state will 
cause the recursion of gradient of performance delayed. While 
the second algorithm is applied in SPMRPs, the variance will 
accumulated for the sparser occurrence of recurrent state. 
Although the third modified method brings a forgetting factor 
in to reduce the variance accumulated by the second algorithm, 
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but our special sample path is so long that the forgetting factor 
neglect the sample path transiting in other subsets, and the 
algorithm only optimize the current part of the single sample 
path. So the optimization along this sample path will be a local 
one and results of searching cannot converge to our objectives 
in a slow velocity. For example, a sample path of the SPMRs 
may be generated as: 

1433443212211 LL  
where states 1 and 2 are in the same subset, 3 and 4 in another 
subset, and transitions among these subsets almost surely take 
place in a long interval. Name the interval between these two 
transitions as segment. Because almost surely every segment 
lasts a long period enough to lead the forgetting 
factor , (0,1) 0kα α ∈ →  and k  is length of a segment.  
According to the example above, the first segment is always 
transiting between the states 1 and 2, which can be seen as 
staying in the same state after aggregation. 

Here, a practical example in production is introduced to 
illustrate the practical application of SPMRPs, let’s consider a 
manufacturing system with two subsystems in tandem. Each 
subsystem has 10 states, so the entire system has 100 states in 
corresponding: 

},,,,{ 10,101,1010,11,1 ssssS LLL=  

where denotation 102,1,,, L=jis ji means that the subsystem 1 

is in state i and subsystem 2 is in state j, and the connection 
of these subsystems is as in Fig. 1: 
 

 
 

Fig. 1 A two-scale hierarchical manufacturing system 
 

In most of situations, this system can be modeled in a 
Markov chain as in [14] with 100 states. But when states of 
the first system change more frequently than those of the 
second one, this system works as a SPMRP, and states 
included in our optimizing algorithm is only about 10. And 
this example is devoted to discrete-time Markov process. In 
such a problem, the computation effort depends mainly on the 
number of the states involved in the whole system. 
Furthermore, in a single sample path of such a system, the 
interval between the transitions of ijss ji ≠→ ,*,*, , will be so 

long that the computation along such a sample path will 
necessarily waste a lot of saving memory and time. Thus the 
singular perturbation modeling will lead to significant 
reduction of complexity, and this point can be throughout 
described and proved in this paper.  

Here, to be more practical, a simulation-based approach is 
necessary to be brought in to optimize an equivalent averaging 
reward problem of the original singularly perturbed Markov 
reward process (SPMRP) before any aggregation, which is 
proposed in [4] with a policy iteration form. Although, being 
suitable for many MRP, the approach in [1] can be used to 
optimize SPMRP in theory, a lot of shortcoming, such as slow 

paces, large biases accumulated, and unexpected lengths of 
regenerative cycles, will be brought in because its ignorance 
of the two-timescale structure of the underlying Markov 
process. The linear programming method proposed in [3] 
cannot be used in on-line optimization for its slow pace, 
either. To overcome these shortcomings and use extra 
information from its special structure, our method is based on 
the aggregated state space, which directly cut down the steps 
of computing, and balancing the frequency of every state 
taken in computing. Moreover, in our method, the recurrent 
state is taken place by the recurrent aggregated state, which 
takes the hierarchical structure and the segmental form of 
sample paths into account and direct to a simplified algorithm.  

The rest of this paper is arranged as follows. In Section 2 a 
formulation of the problem and a gradient of the equivalent 
optimization objective are proposed. In Section 3, an example 
of network of queues in multi-programming will be presented 
to illustrate these properties. Consequently, an estimator of the 
gradient, and an exact algorithm of disturbance-controlled 
case will be proposed with their proof in Appendix. To 
complete our viewpoints, the shortcoming of a general method 
and merits of our method will be discussed in the last section 
through some simulation results. 

II. SINGULARLY PERTURBED MARKOV REWARD PROCESSES 
AND THE GRADIENT OF THE PERFORMANCE METRIC 

A. Singularly Perturbed Markov Reward Processes 
Using the same notation as in [1], consider a discrete time 

Markov chain { } 0≥nni with finite-state space S={ }N,,1L , and 
assume its transition probabilities depend on a parameter 
vector kθ ∈ℜ . Here, transition probabilities can be denoted by 

 
);|()( 1 θθ iijiPp nnij === −

   (1) 

 
When the current state is i , the process receives a one-stage 
reward, which also depends on the parameter θ  chosen and 
can be denoted by )(θig . Transforming the set of transition 
probabilities },),({ Sjipij ∈∀θ into a matrix 

form NNijpP ×= )]([)( θθ , we set a set { ( ) | }kP θ θΡ = ∈ℜ , 

which includes all of such matrices. Henceforth, such an MRP 
can be expressed in the form of four-tuple: 
 

>∈∈∈=<Γ },),;|({},),({},,{, SjiijPSigRS i
k θθθθ  

 
The performance metric used to compute different parameter 
θ s is average reward criterion )(θη , which is defined as: 

0

1( ) lim [ ( )]
k

T

T i
k

E g
T θη θ θ→+∞

=

= ∑     (2) 

where ki  is the state at time k . If the transition probabilities 
matrix )(θP is aperiodic, and average reward )(θη  is well 
defined, and does not depend on the initial state. The average 
reward can be rewritten as 
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)()()( θθπθη         (3) 

where steady state distribution vector 1( ) ( ( ), , ( ))Nπ θ π θ π θ= L  is 
the unique solution of balance equations: 

ππ =P    1=Neπ  
where let N

Ne ℜ∈= )11( L . From the Lemma 1 in the 
[1], If the matrix )(θP  is aperiodic, )(θijp  and )(θig  are 

all bounded for Sji ∈∀ , , are twice differentiable, and have 
bounded first and second derivatives, then )(θπ  and )(θη  
defined above are also twice differentiable, and have bounded 
first and seconded derivatives. 

The main objective of this paper aims to properties of 
SPMRPs. In fact (see, for example, [2]), any transition 
probability matrix of a finite-state Markov chain without any 
transient states can be put into the form: 

⎟⎟
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=
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θ

θ
θ

θ

nP

P
P

P
O

 

where each )(θαP , },,1{ nL∈α  is a transition probability 
matrix within the thα  recurrent class for },,1{ nL∈α . Here, 
denote steady state distribution corresponding to )(θαP  by 

αα θθθθ αααα
mmi vvvv ×ℜ∈= 11 ))(,),(,),(()( LL , where αSi∈ . 

First of all, look into a general Markov chain with its states 
and the transition probabilities corresponding to any pair of 
these states satisfies the following assumption: 

A1) S= U
n
i iS1= , where i jS S φ=I , if ji ≠ , 1>n  

ii mS =|| , Nmm n =++L1 . 
A2) 0},|'{ =θssp  whenever iSs∈  and jSs∈'  , ji ≠ . 

A3) For every ni ,,2,1 L= , and for all kℜ∈θ , the matrix 
)(θiP  is irreducible. 

Then consider the situation where the transition probabilities 
of Γ  are perturbed slightly. Define the disturbance law as the 
set },,'|),|'({ kSssssdD ℜ∈∈= θθ , and the elements of the 
set )(θD  satisfy: ∑ ∈ =Ss ssd' 0),|'( θ , and also transfer these 
elements into a matrix form as 

NNssdD ×= )),|'(()( θθ , where 

)(θD  can be seen as a generator. In addition, one more 
requirement, that there exists some 00 >ε  such that kℜ∈∀θ , 
is necessary, and hence: 

  )()()( θεθθε DGG +=      (4) 
which is a generator of a Markov chain for any 00 εε << . 
Shift our aim to the perturbed Markov chain. As in the G. Yin 
and Q. Zhang [2], suppose that }{ ε

ni  is a SPMP influenced by 
a small disturbance-parameter 0>ε , which can approach zero 
in any rate, but cannot be equal to zero, and also with a finite 
state space },,2,1{ NS L= . The form of the transition 
probabilities satisfy 
 

( ) ( ) ( )P P Dε θ θ ε θ= +      (5) 
 

where )(θεP  and )(θP  are both the transition matrices, and 
)(θD  is a disturbance matrix. Here, we also assume that 
)(θεP  is irreducible for 0>∀ε  as in [2] and [3], that is to 

say, no matter how close ε  approach zero, every subset state 
of state spaces and states in them will occur eventually, only if 
the sample path lasting long enough.  

One-step rewards of the SPMRP are the same as those in 
general processes, and still denoted by )(θig , Si ∈ . Under 
the condition of SPMP, rewritten SPMRP as εΓ  , where 

( ]0,0 εε ∈  , in the form of a four-tuple: 

>∈∈ℜ∈=<Γ },),;|({},),({},,{, SjiijPSigS i
k θθθθ ε

ε  
Denote steady state distribution vector corresponding to the 

transition probability matrix )(θεP  by )(θπε , and one step 
reward ))(,),(()( 1 θθθ Nggg L= . Define the average reward as 
we discussed above as 
 

)()()( θθπθη εε
Tg=       (6) 

And the optimal value function )(θηε
 corresponding to 

SPMRP is given by 
  )]()([max)(* θθπθη ε

θ
ε

Tg
kℜ∈

=      (7) 

 
Example 2.1: To illustrate the singularly perturbed processes 
more clearly, consider an example in hybrid system as: 

1S

2S
)(12 θεp

)(21 θεp

3S

)(13 θεp

)(31 θεp

)(
23 θ

ε
p

)(
32 θ

ε
p

 
Fig. 2 An Example Hybrid System 

 
where every 3,2,1, =iSi

, is a subspace of S  and with the 
transition probabilities );|()( 1 θθε

injnij SiSiPp ∈∈= −
 being 

equal to a )(εO . In another level, each 3,2,1, =iSi
, also have 

its own structure as a Markov chain as: 
);|();( ,1, θθε

kinkinikl sisiPSp === −
  

where  iliki Sss ∈,, ,  and  )();( θθ εε
ijikl pSp >> . 

 
To deal with SPMRPs, a new Markov reward process will be 
constructed through the algorithm of state aggregation, and 
aggregated states in iS  as a new state in original sample path. 
The problem created by aggregation still has an optimization 
objective asymptotically converging to the original one. Here, 
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Denote the aggregated state space by },,,{ 21 nSSS L=Ω , and 
for a simple denotation as },,,,2,1{ nLL α=Ω . To proceed, 
we define a matrix 1~  as 

⎟
⎟
⎟
⎟
⎟
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⎞

⎜
⎜
⎜
⎜
⎜

⎝
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=
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m

m

1

1
1

1~ 2

1

O
 

where entry vectors 1 (1,1, ,1)T
mα

= L , which are of αm  

elements, respectively. From [2] and [3], we can construct a 
new Markov chain as }{ kα , generated by the generator 
 

1~)()}(,)(,),({)( ||1 θθθθθ α DvvvdiagQ Ω= LL    (8) 

 
where )(θαv  is steady state distribution vector of transition 
probability )(θαP , and let )(θπ  be steady state distribution 

vector of transition probability matrix nnIQP ×+= )()( θθ . 
Directly from Lemma 2.1 in [4], there is another optimization 
problem named Aggregated Limiting Problem  
 

>Ω∈Ω∈ℜ∈Ω=<Γ },),;|({},),({},,{, βαθβααθθθ αε Pgk   
                                           (9)                                              

where vectors
1ˆ ( ) ( ( ), , ( ), ( )),

i m ig g g g S
αα α αθ θ θ θ α= ∀ ∈L L  

ˆ( ) ( ) ( ),g v gα α αθ θ θ α= ∀ ∈Ω ,
1 2( ) ( ( ), ( ) , ( ))ng g g gθ θ θ θ= L . And 

its average reward function is defined as 
 

( ) ( ) ( )Tgη θ π θ θ=                (10) 
 
Lemma 2.1: Assume assumption A1)-A3), we have 
 

0 0
lim max ( ) ( ) max ( ) ( ) 0

k k

T Tg gε

ε ε θ θ
π θ θ π θ θ

→ > ∈ℜ ∈ℜ
⎡ ⎤ ⎡ ⎤− =⎣ ⎦ ⎣ ⎦

      (11) 

and in an equal form as: 
 max ( ) ( ) max ( ) ( ) ( )

k k

T Tg gε

θ θ
π θ θ π θ θ ο ε

∈ℜ ∈ℜ
⎡ ⎤ ⎡ ⎤− =⎣ ⎦ ⎣ ⎦

   (12) 

which can be directly proved from the [2]. 
 

So any maximizing parameter θ  for Aggregated Problem is 
also a maximizing parameter θ  for the original problem and 
vice-versa. In the next subsection, the equation of gradient of 
aggregated performance metric takes place of the original one. 
From the above lemma, we can easily prove 
that ( ) ( ) ( )η θ η θ ο ε∇ −∇ = . When optimizing the sample path 

generated by original perturbed process along the gradient 
of )(θη , the optimized value of )(θη  also can be achieved. 

B. Properties of the Gradient of the Performance Metric 
For any kℜ∈θ  and Si∈ , denote the differential reward 

by )(θυi  of state i  by (as in [1]): 

⎥
⎦

⎤
⎢
⎣

⎡
=−= ∑

−

=

1

0
0|))()(()(

T

k
ii iigE
k

θηθθυ θ
       (13) 

where ki  is the state at time k , and min{ 0| *}kT k i i= > =  is 
the first future time that state *i  is visited. With this 
definition, it is easy to find out that *( ) 0iυ θ =  and that the 
vector ))(,),(()( 1 θυθυθυ NL=  is a unique solution to 
Poisson equation:  
 

( ) ( ) ( ) ( ) ( )Ng e Pεθ υ θ η θ θ υ θ= + −  
 
All these denotations defined above is the same as in [1]. 
Corresponding to the aggregated limiting problem, define a 
new differential reward ( ),Dα θ of an aggregated state Ω∈α  
by 

 
' 1

0
0

( ) ( ( ) ( )) |
k

T

k
D E gα θ αθ θ η θ α α

−

=

⎡ ⎤
= − =⎢ ⎥⎣ ⎦

∑%        (14) 

 
where 

kα  is the aggregated state at time kt  , the kth  epoch 
with the transition between two different subsets 

, , , ,i jS S i j i j∈Ω ≠ , and the aggregated state i  can be seen 

as an index for a certain segment covering the sample path 
dominated by  states in some subspace iS , and we let 

}|0min{' 0 αα =>= kT , where there is a trivial assumption that 
the recurrent state of original problem is still in the recurrent 
state of aggregated problem, i.e. *i S∗∈ , and generally 
speaking, we can set the recurrent state of the aggregated 
process as any subset *S , if it  contains the recurrent state in 
original problem. There are still some similar properties as the 
original problem as 

*( ) 0Dα θ =%  and we let 
vector 1( ) ( ( ), ( ))nD D Dθ θ θ=% % %L , which is also a unique 
solution to Poisson equation: 
 

( ) ( ) ( ) ( ) ( )ng D e P Dθ θ η θ θ θ= + −% %         (15) 
 

A theorem for the equation of the gradient of the average 
reward )(θη , with respect toθ , will be displayed. Before the 
beginning of our theorem, there are some results derived from 
the A1)-A3) which is necessary, and here still named them as 
A4) -A5): 
A4) The Markov chain corresponding to )(θP  is aperiodic 

and irreducible. That is to say, there is a state *α that is 
recurrent for the chain. This point can be directly derived 
from the aperiodicity and irreducibility of )(θεP , and at 
least S  can be divided into some 

αS with ** αSi ∈ , 
which *α is an index of some aggregated state. 

A5) For every Sji ∈, , the function )(θε
ijp  and )(θig  are 

bounded, twice differentiable, and have bounded first and 
second derivatives. Hence, for every ,α β ∈Ω , the 
functions )(θαβP  and )(θαg , as the linear function of 

)(θε
ijp  and )(θig , are also bounded, twice differentiable, 

and have bounded first and second derivatives. 
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To be more generality, here, we use A4) and A5) to instead 
that of A1)-A3). 

 
Theorem 2.1 Let assumption A4), A5) hold. Then the gradient 
of the aggregated limiting average reward is 
 

( ) ( )( ( ) ( ) ( ) ( )

[ ( ( )) ( ) ( ( )) ( )] ( ))

T T

i i
ij ij

i S j S i S j S

g v g v

d v d v D
α β α β

α α α α α
α

α α β
β

η θ π θ θ θ θ θ

θ θ θ θ θ
∈Ω

∈Ω ∈ ∈ ∈ ∈

= ∇ + ∇ +

∇ + ∇

∑

∑ ∑ ∑ ∑ ∑ %
(16) 

                                            
The proof of this theorem is in Appendix. Specially, when the 
disturbance matrix )(θD  is irrelative with the parameterθ , 
we have  
Corollary 2.1 Let assumption A4), A5) hold, and disturbance 
factors are independent of the parameterθ . Then 
 

∑
Ω∈

+∇+∇=∇
α

ααααα θθθθθπθη )()()()()(()( TT vgvg         

[ ( ) ( )] ( ))i
ij

i S j S

d v D
α β

α β
β

θ θ
∈Ω ∈ ∈

∇∑ ∑ ∑ %   (17) 

 
The equations given by Theorem 2.1 and Corollary 2.1 
involve no terms of the steady state distribution of )(θεP , but 
involve with those of )(θαP , Ω∈α . Hence, differing from the 
counterpart in [1], an algorithm to estimate terms as )(θα

Tv∇ is 
necessary, which will be introduced in Section 4, but we will 
still find that our schedule of computing the gradient is much 
better than that in [1] for a singularly perturbed Markov 
reward chain, and it will reduce the iteration steps. 

III. THE MODEL IN NETWORK OF QUEUE 
  These theoretic properties of singularly perturbed Markov 
chains can applied to model a great deal of stochastic systems, 
such as network of queue, information processing of operation 
systems, market network. To illustrate the application of 
singularly perturbed Markov chain in these practical systems, 
and to explain the physical meaning of the concepts in 
SPMRP, a hierarchical network of queues is introduced. 
  Let us apply some concepts to a simple model of a network, 
which was first analyzed by J. R. Jackson [14]. Consider a 
simple model of a multiprogramming paging system: 
1. N  active user terminals originate with Poisson rate λ  

requests for program processing, and name these requests as 
jobs. There may exist at most one job per terminal at a 
system epoch. 

2. Jobs are processed in main memory on a multi-programmed 
basis. Let J  be the current number of jobs being 
programmed in the system. 

3. Pages that cannot be contained in main memory are located 
in an auxiliary memory level from which they are loaded on 
a page on demand strategy. 

Therefore, at any epoch, multi-programmed jobs are in one of 
three states: ready state, requesting but not receiving process 
signals form the processor; running state, receiving the control 

of processor; suspended state, waiting for a page transfer from 
auxiliary to main memory. Here, use a figure to clarify our 
system: 

RESOURC
E

RUN READY

SUSPEND
ED I

Poisson Stream

J

P(J) Q(I)

 
        Fig. 3 A Multi-Programming System 

 
Corresponding to this figure, there are some additional 

assumptions: first of all, at any time, each multi-programmed 
job is allocated an equal number of quantities of page frames, 
and denote such a mount by J  available in main memory. The 
probability of a page transfer from running state to suspended 
state is assumed to be ( )P J , 1, 2,J N= L . On the other hand, 
assume that the requests for page transfer from auxiliary to 
main memory are not necessarily served on a FIFO basis, but 
in some order which depends upon current state of the 
auxiliary memory so as to optimize the overall page transfer 
rate. The rate can be seen as a function of the number of 
suspended jobs, and denoted by ( )Q I . Furthermore, the 
probability that a page transfer from the processor back to the 
resource can be neglected.  
  From a practical view in computer systems, the rates of 
transition among state running, suspended, and ready will 
usually be much higher than the rates at which jobs are 
generated and completed. So the whole system can be 
decomposed into two parts, one with some resource terminals 
that can be seen as a resource of Poisson stream; on the other 
hand, the part of processing can be seen as an aggregated state 
with state running, suspended, and ready. 
  Take the jobs in states running, suspended and ready, 
respectively as a three-tuple ( , , )R s rs s s , and use the 
three-tuple to index the state of processor. If the numbers of 
jobs in states： running, suspended, and ready are constant, the 
system can be seen as a close network of queue, and hence the 
transition among these states can be seen as Markov chain. 
While in some practical sense, these Markov chains are not 
stable, and they are perturbed by Poisson stream, which leads 
to the change of the mount of jobs. Divide the original state 
space into subsets which we need as: 

{( , , ) | }, 0,1, 2,J R s r R s rS s s s s s s J J J= + + = = L  

where use J denote the super of the number of jobs in 

processing. And subset series{ , 1, }JS J J= L  satisfies the 
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assumption A1)-A3), and can be taken as aggregated states. 
For a more simple and direct way to our aggregation, use the 
symbols {1, 2, , }JL  to index these aggregated states. Till 
now, the physical meaning of aggregation of such a perturbed 
close Jackson network can be clarified. Before the aggregation, 
it should be taken into consideration that not only whether a 
new job is arrived, but also the distribution of current jobs that 
are in three different states. But, based on the fact that the 
event that a new job arrive takes place less frequently than that 
of transition of these three states in the sense of a completely 
close Jackson network. So, before the arrive of the 1J + th, the 
distribution of J  jobs have already entered the stationary 
steady state, and it means that whenever a new jobs arrive, the 
current state can seen as the same in the stochastic sense, i.e. 
the difference among current states (1,1, 2), (1, 2,1), (0,0, 4)L  
can be neglect before the 5th job arrive. Obviously, the 
aggregated chain is still a Markov chain, for it describes a 
Poisson stream with a constant arrive rate. The transition 
probability matrix is just a dimension of J J× , which is 
much less the original matrix with its dimension 

3 3( ) ( )O J O J× .  
  When a judgment before the job enter the processor is 
added, and assume that in different state ),,(: rsRRsr sssS , the 

cost of the computing can be denoted by ( )RsrR s . Then, 
model the optimization of this multi-programmed system as a 
singularly perturbed Markov reward process, or more precise, 
model it as a singularly perturbed close network. Set a 
parameter [0,1]θ ∈  to control the acceptation and rejection 
of a new job: the new job will be accepted by probability 
θ and rejected otherwise. Our goal is to choose a reasonable 
θ  that is a function of the jobs in the close network currently, 
and hence this parameter can be seen as a policy 

(( , , ))R r ss s sθ , corresponding to every state. While from 
discussion above, we knew that the action of judging a new 
job can be accept or not is based on the event a new job is 
arriving at the front of judgment, so current state in close 
network have already enter a stationary steady state 
distribution. Hence, corresponding to aggregated states, our 
policy can be simplified as ( )R r ss s sθ + + . And the whole 
model is described as in Fig. 4: 

Resource

ResourceResourceR

s

rJudge

Poisson 
Stream

1-parameter

parameter

Close Network

Cost R(R,s,r)

Perturb Resource

 
Fig. 4 A Multi-Programming System with Parameter and Cost 

  In this section, our definitions of SPMRPs are applied into a 
practical issue, a multi-programmed system. From the models 
set above, we acquire some useful physical meaning of the 
singularly perturbed Markov chain and its aggregated chains. 
We also applied the reward or cost process into such a system, 
and create a denotation of perturbed close network. From the 
analysis of policy and aggregation in these systems, we prove 
that our models of singularly perturbed Markov reward 
process and aggregation idea are all with practical value. 
There still a lot of some other widely studied models which 
can be use to illustrate a SPMRP, and after modeling a 
practical system in a SPMRP, the next step of us is to propose 
an effective algorithm to estimate the gradient of performance 
metric and search an optimized value following it. 

IV. THE SIMULATION-BASED OPTIMIZATION 
In this section, a simulation-based algorithm to computing 

the gradient of )(θη  is proposed, which is asymptotically 
replaced by )(θη∇ , and both optimizations of performance 
are evolving with the same sample path. Moreover, in this 
section, it will also be clarified that why steps of updating are 
less than the general algorithm in [1], and display the whole 
schedule of this algorithm. As proposed in Section 2, the extra 
estimators such as )(θαv∇  and )(θαv are necessarily created 
before estimating )(θη∇  from ( )Dβ θ% . In the first subsection 

we will show that only with the information in a single sample 
path long enough, we can get these terms in a recursive way 
approaching theoretical ones. 

 

A. Estimators of )(θαv∇  

Compared with the algorithm without states aggregation 
(such as in [1] ), )(θαv∇  can not be neglect here, so a method 
invented to estimate these terms is necessary in our algorithm. 
However, these terms are not directly acquired through sample 
paths simulated by transition probability matrix )(θεP . To 
obtain them, we should first look into sample paths generated 
by matrices )(θαP  corresponding to estimate )(θαv∇ . )(θαv  
is steady state distribution vector of )(θαP , which can be 
easily estimated from counting the occurrence of each states 
along the sample path , and we also have balance equations: 

 
)()()( θθθ ααα vPv =      11~)( =

α
θα mv   (18) 

 
Here, we will propose a method based on a single sample 

path generated by )(θεP  to approach results of theoretical 
ones of )(θαP . Now we take steady state probability of the ith 
state )(θα

iv , 
αSi∈ as a new performance with matrix )(θαP . 

To compute this performance and its gradient, we set one-step 
reward vector αα

αααα φφφφ mimijii ×ℜ∈= 11 },,,,{ LL as: 
 

1=ii
αφ    0=ij

αφ    ij ≠∀    
αSji ∈,   (19) 
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As the performance metric introduced in Section 2 as equation 
(2), to compute all parameters for the whole singularly 
perturbed problem, we first set the average reward criterion 
defined by 

0

1( ) lim [ ( )]k

T
ii

T k
E

T θ αµ θ φ θ
→+∞

=

= ∑  

 
where the process can be seen as being generated by some 

)(θαP ,so 
αSik ∈ , and we can easily find that )()( θθµ α

iv= , 
when we reform the average performance metric as 
 

( ) ( ) ( )i iv vα α αµ θ θ φ θ= =  
 

And we rewrite the gradient of this average performance 
metric as 

( ) ( ) ( ) ( )i i i
ij j

i S j S
v v p d

α α

α αθ θ θ θ
∈ ∈

∇ = ∇∑ ∑   (20) 

 
where ( )ijp θ  is an entry in ( )P θ  in (5), and ( )i

jd θ  is defined 

as a differential reward corresponding to this partial problem 
to compute ( ) ( )i

jv θ µ θ∇ = ∇ , defined by 

 
1

0
0

( ) [ ( ( )) | ]k

T
iii i

j
k

d E v i jθ α αθ φ θ
−

=

= − =∑    (21) 

 
where , ,ki i j Sα∈ and min{ 0 | *}kT k i i= > =  is the first future 
epoch state *i  is visited. Through an approximation we can 
connect this theoretical result with our simulation sample 
paths as follows: 
 
Lemma 4.1:  For any ,i j Sαα α ∈ , we have 

( ) ( ) ( )i iv vα αθ θ ο ε∇ −∇ =%      

where 
( ) ( ) ( ) ( )

i j

i i i
j

i S j S
v v p d

α α

ε
α α α αθ θ θ θ

∈ ∈

∇ = ∇∑ ∑%           (22) 

 
and 

iα  is the ith  state in the set Sα
. 

 
It can be proof this problem in a short way as 
 

( ) ( ) ( ) ( )i i i
ij j

i S j S

v v p d
α α

α αθ θ θ θ
∈ ∈

∇ = ∇∑ ∑  

  ( ) [ ( ) ( )] ( )
i j i j

i i
j

i S j S
v p q d

α α

ε
α α α α αθ θ ε θ θ

∈ ∈

= ∇ −∑ ∑  

 
So the single sample path can be used to approach theoretical 
results, and as 0ε →  have ( ) ( )i iv vα αθ θ∇ = ∇% . 

From Theorem 3.2 in [5], for any ti S∈ , tα ∈Ω , Sαα ∈ , 
α ∈Ω  we have 

21

{ } { }
[0, ] 0

sup (1 1 ) ( )j

t tj

k

i S
t T t

E v
α

α
θ α α αε ο ε

−

= =
∈ =

− =∑   (23) 

So we can use the states series generated from the sample path 

to approximate the ( )ivα θ  by 
1

{ }0
1

{ }
0

1( )( ) ( ) ( )
( ) 1

t j

t

k
i i Sti

kj
j S

t

vv
v

α

α

ε
α

ε
α α

θθ ο ε ο ε
θ

−

==

−
∈

=
=

= + = +
∑

∑ ∑
    (24) 

where ( )ivε θ  is the ith  elements of ( )vε θ  which is steady 
state distribution vector of ( )Pε θ . 

 
Remark 4.2: Although the whole process of the gradient of 
every steady state distribution is the same as that in Section 2, 
not only by equation (24) steady state distribution can be 
easily achieved, but also from the iteration in equation (22) we 
can also update it. So the whole process of computing ( )vα θ∇  
will be more direct and simple than the algorithm proposed in 
Section 2. 
 
Remark 4.3: From equation (24), it can be found out that all 

( )vα θ  and ( )vα θ∇  are irrelative with any other aggregated 
state β ∈Ω . These terms can be generated from a successive 
series dominated by states in a constant subset of the original 
state space S, even when this series is interrupt by some other 
states, if and only if this series contains enough such states, 

},{}{
kk Sikki ∈∞<

simulated in this single sample path. 

 

B. The Optimization for Disturbance-Controlled Model 
In this subsection, a special but useful case will be taken 

into count. Transition matrix ( )P θ is irrelative with parameter 
θ , and only the behavior of perturbation factor ( )D θ  is 
controlled by parameters. So equation (5) can be rewritten 
as ( ) ( )P P Dε θ ε θ= + . This case can be name as a Disturbance 
Controlled Model. Corresponding to the network mentioned in 
Section 3, it means that the resource of jobs, and Poisson rate 
of jobs as ( )λ θ , which is controlled by parameter, and the 
transition in three states: running, ready, and suspended is out 
of the influence of these parameters. In this case, we have 

( ) 0vα θ∇ = , θ∀ ∈Ω , and derived from Theorem 2.1, there is: 
Corollary 4.4: Let assumption A4), A5) hold, and only 
disturbance factors are dependent on parameterθ . Then 
 

( ) ( )( ( ) [ ( ( )) ] ( ))T i
ij

i S j S
g v d v D

α β

α α α α β
α β

η θ π θ θ θ θ
∈Ω ∈Ω ∈ ∈

∇ = ∇ + ∇∑ ∑ ∑ ∑ %      

                                               (25)          
 
Lemma 4.5: The aggregated chain associated with the 
generator ( )Q θ is a Markov chain on a finite or countable 
state space Ω  defined by

kk Tiα = , where 
kT s are the 

successive epochs at which the chain enter another subset, i.e. 
aggregated state. 

This can be directly obtained from Lemma 2 in [6], and the 
proof is omitted here. From (25), we can find out that the 
gradient of the performance is irrelative with ( )vα θ∇ , so that 
only some counters are required to record steady state 
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distribution vectors. Meanwhile, a long-term decision series 
for ( )vα θ∇  are not necessary. Here, the whole schedule of 
our algorithm for this case will be listed in Algorithm 1, and 
from the expression of this algorithm, it can be easily found 
out that no matter how many states in the original state space 
S , the algorithm only evolves with the aggregated state space 
Ω . 

 
Algorithm 1：Optimization Algorithm Based on Aggregation 

Step 0    Compute ( )gα θ , and ( ) ( )i
ijj

D d
β

θ θ
∈

= ∑  for all 

,α β∈Ω and i S∈ .  

Step 1 Estimate the steady state distributions of ( )Pα θ  
as:                          

{ }
0

ˆ ( ) 1
i k i

T

i
k

x Tα α=
=

= ∑   
{ }

0

ˆ ( ) 1
k

T

i S
k

x T
αα ∈

=

= ∑            

ˆ ( )
ˆ ( )

ˆ ( )
ii

x T
v T

x T
αα

α
α

=                           

until for some δ , ˆ ˆ| ( 1) ( ) |l lT v Tα α
α αν δ+ − < . By the 

way, this step can be completed in just one 
segment of the sample path, in which the states of 
subset Sα

 take place far more frequently than 
others. 

Step 2  Compute some factors 

1̂ ˆ( ) ( )TF v gα
α αθ θ=    

2
ˆ ˆ( ) [ ( )] 1TF v Dαβ α

αθ θ= +  

where 1ˆ ˆ ˆ( , , )miiv v v α
α α α= L , 

1( ) ( ( ), , ( ))miiD D D αα θ θ θ= L  
and 1, , mi i S

α α∈L
. 

Step 3   Recursive in every epoch k , where 
1k kk T Ti iα −= ≠  

and compute following equation iteratively until the 
recurrent aggregated state

*S  or 
*α  is first revisited 

in future: 
1 1

1
ˆ ˆˆ ˆ( , ( )) ( ( ) ( ))

m
k

t

m m m
k n

D Fαθ η θ θ η θ
+ −

=

= −∑
11

1

1
2

1
2

ˆ ( )ˆ ˆˆ ˆ( , ( )) ( ( ) ( , ( )) )ˆ ( )

n nm
n

n n n
m

t
m

m m m m i m m
k t m

FF F D
F

α α
α

α α

θθ η θ θ θ η θ
θ

−+

−

−

=

∇
= ∇ +∑

 
      

1 ˆ( , ( ))m m m m m mFθ θ γ θ η θ+ = +  
1 1

1ˆ ˆ ˆ( ) ( ) ( ( ) ( ))
m

n
m

t

m m m m m m
n t

gαη θ η θ λγ θ η θ
+ −

+
=

= + −∑  

where mγ  is a positive step size sequence, 0λ>  
allows to scale the step size for updating ˆ ( )mη θ  
by a positive constant, and kα  is the aggregated 
state.  

Step 4   When α∗  is revisited, return to Step 1, unless 

| ( ) ( ) |
m l mt tη θ η θ δ
+

− < , where 0>δ  is a number 

small enough. Sometimes, to need a more exact 
result, we should require a performance series 

},2,1),({
1

lk
mt L=
+

θη enter some stable domain, 

where l  is large enough. 
 

From the expression of this algorithm, it is clear that no matter 
how many states in the original state space S , the algorithm 
only evolve with the aggregated state in the aggregated 
spaceΩ . For example, even when there is a SPMRP problem 
with ten thousand states, if the whole state space can be 
aggregated as a problem with ten states, the complexity and 
updating steps of this algorithm is the same as a 
small-dimension problem with ten states. Henceforth, our 
methods can simplify a class of large-scale states problem in 
Markov Decision Processes and Markov Reward Processes.  

V. SIMULATION AND RESULTS 
In this section, some examples will be given to illustrate our 

algorithm, which will update the performance and parameters 
along the sample path generated by a singularly perturbed 
Markov processes. Here, name every epoch of the data 
updating as iteration, and iteration steps is an important 
measurement to value a method. The sample path generated 
by the transition probability matrix with the form: 
 

1 1,1 1,2 1,3

2 2,1 2,2 2,3

3 3,1 3,2 3,3

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

P D D D
P P D D D

P D D D

θ θ θ
θ ε θ θ θ

θ θ θ

⎛ ⎞Θ Θ⎛ ⎞
⎜ ⎟⎜ ⎟= Θ Θ + × ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟Θ Θ⎝ ⎠ ⎝ ⎠

 

 
where all entries in matrix Θ are zeros, and the disturbance 
matrix is controlled by parameters. All entries in matrix 

, ( )Dα β θ  are larger than 0, kθ∀ ∈ℜ , for any α β≠ , and here 

chose 0.001ε = , and here )(θP  is a transition matrix. All 
blocks of transition matrix Pα , 1, 2,3α = are with a large-scale 
state space. The current state *i  is assumed in the subset 

1S  
corresponding to the transition matrix

1P , so aggregated state 1 
is the recurrent state in our simulation. 
  In our algorithm, view the sample path as the evolution of 
aggregated states. So the recurrent state should be redefined in 
the sense of aggregation. Denote this new state by *α . The 
other details in our simulation are omitted here, such as the 
value of every entry in matrix Pα , and the initial state in our 
simulation. Obviously, from our results displayed in those 
figures below, it is clear that algorithm with state aggregation 
will lead to a smoother optimization and faster convergence. 
The results in Fig.5-(a) and Fig.5-(b) show that the 
convergence in algorithm with state aggregation will be better 
than the one without aggregation. It is just because of the 
sample path of the singularly perturbed Markov chain, which 
always transits among some long segments, each of which are 
dominated by a certain subsets , 1, 2,3Sα α = , so iterations in 
an algorithm without aggregation are constrained as a local 
optimization within some subset until the single sample path 
reach a new segment dominated by another subset. Here, 
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results of the algorithm without aggregation are also given to 
compare the metrics our methods.  
 

 
Fig. 5 (a) Iteration for performance with state aggregation 

 

 
Fig. 5 (b) Iteration for parameter with state aggregation 

 
To illustrate new algorithm more clearly, we give another 

example, a singularly perturbed Markov reward process whose 
states can be divided into two subsets. Hence, we can clarify 
the transitions between these subsets from simulation more 
precisely. Here, we give our results of simulation for this 
example in Fig. 6 and Fig. 7: 

 
Fig. 6 (a) Iteration for performance without state aggregation 

 
Fig. 6 (b) Iteration for parameter without state aggregation 

 
Fig. 7 (a) Iteration for performance with state aggregation 

 

 
Fig. 7 (b) Iteration for performance with state aggregation 

 
From this figure, there is some undulation caused by the 

transition between two different subsets. In this simulation,  
let the recurrent state in the first subset, and Segment 1, 
Segment 5 and Segment 3 are dominated by the first subset, so 
the change in these parts of the sample path contribute a lot to 
the whole optimization, while Segment 4 is dominated by the 
other subset, and it evolves with variance accumulation. Fig.8 
is a curve of theoretical performances around the optimize 
parameter: 

 
Fig. 8 Performances of a set of parameters around the optimized 

value 

VI. CONCLUSION 
In this paper, the gradient of performance of singularly 

perturbed Markov reward processes with aggregated states is 
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obtained, and an algorithm is designed to save iteration steps 
and the mount of computing during the optimization. With the 
character that the new algorithm is based on the single sample 
path, it also can optimize the objective on-line with the 
evolution of practical processes. Furthermore, the special case 
in Section 4 is also a widely applied model in practice, so that 
the schedule set in this section will be helpful in future studies 
of singularly perturbed Markov reward processes, which has 
been partly revealed by these simulations. 

APPENDIX 
Proof of Theorem 2.1:  
Carry out the proof using vector notation, and using the 

superscript T  to denote the transpose. All gradient are taken 
with respect to parameter vectorθ . 
  First of all, let us take Poisson equation into consideration: 
 
         ( ) ( ) ( ) ( ) ( )ng D e P Dθ θ η θ θ θ= + −% %  
 
and left-multiply both sides with )(θπ T∇ , which is steady 
state distribution after aggregation, to obtain: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T
ng D e P Dπ θ θ π θ θ η θ π θ π θ θ θ∇ =∇ + ∇ −∇% % (26) 

 
Note that ( ) 1T

neπ θ = , so we have ( ) 0T
neπ θ∇ = . Using the 

balance equation )()()( θπθθπ TT P = , we have: 
 

))()(()())(())()(()( θθπθθπθθπθπ PPP TTTT ∇+∇=∇=∇  
 

Right-multiply the equation above both sides by )(θR , have: 
 
    ( ) ( ) ( ( )) ( ) ( ) ( )( ( )) ( )T T TD P D P Dπ θ θ π θ θ θ π θ θ θ∇ = ∇ + ∇% % %  
 
and using the result in (26), we have: 
 

    
( ) ( ) ( ( )) ( ) ( ) ( )( ( )) ( )

( ) ( ) ( ) ( ) ( )

( )[ ( )] ( )

T T T

T T
n

T

g P D P D

e P D

P D

π θ θ π θ θ θ π θ θ θ

η θ π θ π θ θ θ

π θ θ θ

∇ = ∇ + ∇

+ ∇ −∇

= ∇

% %

%

%

 

Thus: 
 
  ( ) [ ( ) ( )] ( ) ( ) ( )[ ( )] ( )T T Tg g P Dη θ π θ θ π θ θ π θ θ θ= ∇ = ∇ + ∇ %    (27) 

 
so, take the definition of the items in aggregated problem into 
equation (27), then: 
 

1 | |

( ) ( ) [ ( ) ( )]

( ) [ { ( ), , ( ) , ( )} ( )1 ] ( )

Tg v

diag v v v D I D

α α α
α

α α

η θ π θ θ θ

π θ θ θ θ θ θ
∈Ω

Ω

∇ = ∇ +

∇ +

∑
% %L L

 

 
( )( ( ) ( ) ( ) ( )

[ ( ( )) ( ) ( ( )) ( )] ( ))

T T

i i
ij ij

i S j S i S j S

g v g v

d v d v D
α β α β

α α α α α
α

α α β
β

π θ θ θ θ θ

θ θ θ θ θ
∈Ω

∈Ω ∈ ∈ ∈ ∈

= ∇ + ∇ +

∇ + ∇

∑

∑ ∑ ∑ ∑ ∑ %
 

 

where the )(θijd  is the thji ),(  element of matrix )(θD . If the 
assumption that the transition matrix )(θP  is irrelative of the 
parameterθ , then comes the result: 
 

( ) ( )( ( ) [ ( ( )) ] ( ))T i
ij

i S j S
g v d v D

α β

α α α α β
α β

η θ π θ θ θ θ
∈Ω ∈Ω ∈ ∈

∇ = ∇ + ∇∑ ∑ ∑ ∑ %  

 
This completes our proof. 
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