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Abstract—This paper is mainly concerned with the application of 

a novel technique of data interpretation to the characterization and 
classification of measurements of plasma columns in Tokamak 
reactors for nuclear fusion applications. The proposed method 
exploits several concepts derived from soft computing theory. In 
particular, Artifical Neural Networks have been exploited to classify 
magnetic variables useful to determine shape and position of the 
plasma with a reduced computational complexity.  The proposed 
technique is used to analyze simulated databases of plasma equilibria 
based on ITER geometry configuration. As well as demonstrating the 
successful recovery of scalar equilibrium parameters, we show that 
the technique can yield practical advantages compares with earlier 
methods.  
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I. INTRODUCTION 

OKAMAK [1] are experimental devices aiming to 
demonstrate the technical feasibility and practical 

relevance of controlled thermonuclear fusion via magnetic 
confinement. A critical issue both for design and operation of 
a Tokamak machine is the real control of the plasma ring in 
the chamber during the discharge [2]. For this reason, one 
needs a fast identification tool of the plasma position and 
shape starting from a set of measurements, usually given by 
magnetic probes and loops located in the proximity of the 
chamber wall. The task is difficult, especially if the plasma 
cross-section is non-circular, since there are more parameters 
to be estimated in order to completely characterize the 
equilibrium. The problem becomes even more difficult if the 
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kind of Magneto-Hydro-Dynamic (MHD) equilibrium of the 
plasma changes during the discharge. This is the case, for 
example, of plasma which passes from a Limiter configuration 
(where the plasma boundary is defined by the outermost 
magnetic flux line before touching any metallic wall) to an X-
point configuration (where the plasma boundary is defined by 
the flux line where a null point and consequently a field 
bifurcation occur).  

In the domain of plasma control, the location of plasma 
column (in terms of shape and position) evolving in the 
chamber represents a crucial step. In particular, the problem 
can be formulated as the search of a suitable mapping between 
the set of available measurements (sampled by means of 
sensor located around the chamber contour) and the selected 
set of shaping parameters.  

In this paper, we have focused our attention on ITER 
configuration (Figure 1) in which we deal with inner, outer 
and divertor sets of sensors. In order to reduce the 
computational complexity and due to the fact that the inner 
sensors are inaccessible, we propose a Neural Network 
approach (NN) to classify measurements (inner, outer, 
divertor).  

To improve the obtained performance, we propose an 
approach that provides equivalence between outer sensors and 
inner-divertor ones.  

The paper is organized as follows. Section II reports an 
overview of the exploited numerical database. After a short 
description on Artificial Neural Networks (ANNs) reported in 
section III, we describe the proposed approach for 
classification problem (section IV). Section V shows the 
procedure to drive to the reduction of the computational 
complexity. Finally, we draw some conclusions. 
 

II. THE ITER NUMERICAL DATABASE: AN OVERVIEW 
Using the ITER  coil and vessel geometry (Fig. 1), 

including the 6 dominant passive current eigenmodes, a 
database of  4848 lower single null equilibria has been 
generated by the Plasma Data Analysis Group (PDAG), 
Physics Department, University College Cork, Association 
EURATOM-DCU.  

The equilibria were generated using a Database Generation 
and Analysis Package (DGAP) which has been developed by 
PDAG.  

The core equilibrium calculation in DGAP is performed by 
the Garching Equilibrium Code (GEC). The magnetic 
parameters of database built with B-tangential and B-normal 
signals simulated of gaussian noise (average= zero, standard 
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deviation=magnitude of the simulated measurement noise) of 
10 mTesla [3], are referred to lower X-point plasma which  
Plasma Current (IPLA) is 15 MAmpere, the toroidal field 
(Bo), referred to 6.2 meters from the center of torus, is 5.3 
Tesla.  

The magnetic measurements, deriving from the sensors 
located along the contour of the chamber, are subvided as 
follows: 

• 24 B_ Tangential signals on the Vacuum Vessel 
Inner Skin Contour; 

• 24 B_ Normal Signals on the vacuum vessel Inner 
Skin Contour; 

• 6 B_ tangential signals below the Divertor Contour; 
• 6 B_ normal Signals below the Divertor Contour; 
• 120 B_ tangential Signals on the Vacuum Vessel 

Outer Skin Contour; 
• 120 B_ normal signals  on the Vacuum Vessel Outer 

Skin Contour. 
 

 
Fig. 1 The cross-section of the ITER Configuration with a schematic 

dislocation of the outer (star), inner (circles) and divertor (bold 
circles) sensors around the vacuum vessel 

 
The analysis considers three different configurations of 

inputs. In particular: 
1) first configuration:  inner + divertor (60 parameters) 

• 24 B_ Tangential signals on the Vacuum Vessel 
Inner Skin Contour; 

• 24 B_ Normal Signals on the vacuum vessel Inner 
Skin Contour; 

• 6 B_ tangential signals below the Divertor Contour; 
• 6 B_ normal Signals below the Divertor Contour; 

2) second configuration:  Outer skin contour (240 parameters) 
• 120 B_ tangential Signals on the Vacuum Vessel 

Outer Skin Contour; 
• 120 B_ normal signals  on the Vacuum Vessel Outer 

Skin Contour. 

3) third configuration:  the whole of magnetic signals (300 
parameters).  

Starting from third configuration, by means of the proposed 
approach, a classification of measurements is carried out. 
Finally, exploiting first and second configurations, a sort of 
equivalence between outer measurements and inner-divertor 
ones is showed.  

A pictorial representation of the three configurations is 
showed in Figure 2.  
 

 
Fig. 2 Pictorial representation of  the database configuration 

III. THE ARTIFICIAL NEURAL NETWORK APPROACH 
Artificial Neural Network (ANN) implements a non linear 

function mapping one multidimensional space, { }x , into 

another one, { }z  [4]. This function has a predefined structure 
but contains several parameters which are going to be 
determined during the training phase which consists in the 
evaluation of the parameters which minimize the differences 

between the target output  t  and the network output, z . 
Among several possible structures of the network, we use a, 
so called, feed-forward multilayer perceptron model.  
This kind of network is known to approximate arbitrarily any 
continuous multi dimensional mapping [5].  

The hth-component of the vector output (h=1, nz), can be 
written as  

)(
1

∑
=
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Where: 

iy  is the ith-component of the output of the first layer;  
nx , ny and nz are the dimension of the input vector, the 
number of the hidden neurons and the dimension of the 
network output respectively; 
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F is a non-linear function. Typically, it can be a sigmoidal 
function: 

( ) 1)exp(1 −−+ a                (3) 
But other functions can be take into account. In each layer, the 
input variable to the specific layer is transformed first linearly,  
by means of a matrix (WX and WY for the first and the second 
layer respectively) and then by a non- linear function. The 
values of the (nx*ny+ny*nz) unknown elements of the 
matrixes WX and WY are found by minimizing an error 
function of the type: 

2
)(

1
)( ]),,([*5.0 k

N

k
k tWYWXxzE ∑

=

−=       (4) 

in which the sum is extended to the whole training set. A slow 
but reliable method to minimize the above equation is known 
as back-propagation algorithm [6] and consists of evaluating 
the derivatives of E with respect to the elements of the WX 
and WY matrixes and corrects the unknown parameters using 
gradient descendent in the following way: 
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where δ is an appropriate learning rate parameter and n is the 
iteration number. Regarding our classification problem, we 
exploit Multi-Layer Perceptron (MLP). Next section explains 
the proposed approach.  
 

IV. MULTI-LAYER  PERCEPTRON TO CLASSYIFY MAGNETIC 
MEASUREMENTS IN TOKAMAK REACTOR 

Multi-Layer Perceptron (MLP) is useful for classification 
problem [7] optimizing the solution by means of back-
propagation algorithm. The goodness of the achieved results 
can be evaluated, for example, computing the Root Means 
Square Error (RMSE).  The approach is designed according 
the following procedure:  

1. Training phase: the set of input variables is 
represented by a reduced sub-set extracted from third 
configuration (see section II) that takes into account 

300 variables and 800 cases; 

2. Validation and testing phases: two databases 
(300x800) extracted from third configuration. 

 

3. The classification is carried out by means of a codify 
reported in Table I. Each kind of measurement is 
associated to a sequence of zero and unity. 

The MLP configuration, visualized in Figure 3, has given 
the better performance. Its characteristics are reported in 
the following lines: 

• Input layer of 800 neurons; 

• Output layer of 3 neurons (array of zero and unity);  

• 2 hidden layer of  35 and 45 neurons respectively; 

• Non-linear function is sigmoid; 

• Learning rate lr= 0.01; 

• Minimum gradient min_grad=  10-22; 

• Epochs= 500; 

• Goal= 10-10; 

The goodness of the results are tested with three different 
database: 

• Database A (so-called A Class): obtained with a 
random permutation of the input vector exploited in 
training phase; 

 
• Database B (so-called B Class): adding some new 

variables to Database A;   
 

• Database C (so-called C Class): a new Database has 
been take into account.  

 
Table II reports a summary of obtained results in terms of 
RMSE in which, for each class, the left side is referred to 
tangential variables,  whereas the right side to normal 
variables. Figure 4 reports, for A Class, the obtained output 
(red points) and wanted ones. Notwithstanding the low value 
of convergence, the reliability of the nets is very poor.  
In addition, from any dataset, the classifier is not able to 
extract information concerning the kind of inner and divertor 

sensors. In this way, our attention is addressed to an 
alternative approach.  

 
 
 
 
 

 

TABLE I 
CODIFY OF OUTPUT 

Inner 
Tangential [ ]000  Inner 

Normal 
]100[

 
Divertor 

Tangential 
]010[  Divertor 

Normal 
[ ]001  

Outer 
Tangential 

[ ]110  Outer 
Normal 

[ ]111  

TABLE II 
 SUMMARY OF OBTAINED RESULTS BY MEANS OF  MLP APPROACH 

 A CLASS B CLASS C CLASS 

# Errors 100/300 133/300 134/300 
In 0 0 0 0 0 0 

Div 0 0 0 0 0 0 

# 
of

 
va

ri
ab

le
s 

co
rr

ec
tly

 
cl

as
si

fy
  

Out 106 94 88 79 84 82 
% error 33.3 44.3 44.6 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:7, 2007

299

 

 

  
Fig. 3 Classification of magnetic measurements: the exploited MLP network  
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Fig. 4 Classification of magnetic measurements for A Class:  
wanted versus obtained values   

 

IV. AN ALTERNATIVE APPROACH FOR CLASSIFYING MAGNETIC 
MEASUREMENTS IN TOKAMAK REACTORS 

In plasma physics, outer variable is very important to 
control the position of plasma in terms of its shape and 
position inside the vacuum vessel whereas inner and divertor 
variables are found in the inaccessible location. In this section 
of the paper, we propose a NN approach to stored outer 
variables as inner or divertor ones (normal and tangential).  
First step of the alternative approach consists to select only the 
outer parameters reducing the size of database from 300 to 
248 variables. Then, we have associated outer sensors (normal 
and tangential) to inner-divertor ones that present similar 
behavior. This association has been carried out by means of 
computation of Root Means Square (RMS) on each possible 
couple of variables (tangential inner- tangential outer, 
tangential divertor-tangential outer, normal inner- normal 
outer, normal divertor – normal outer); if RMS is a minimum 
value, then that outer variables can be stored as  inner/divertor 
variable. Once the transformation takes place, we exploit the 
procedure described above.  

The MLP configuration, visualized in Figure 5, has given 

the better performance. Its characteristics are reported in the 
following lines: 

• Input layer of 800 neurons; 
• Output layer of 3 neurons (array of zero and unity);  
• 2 hidden layer of  35 and 45 neurons respectively; 
• Non-linear function is sigmoid; 

Table III reports a summary of obtained results in terms of 
RMSE in which, for each class, the left side is referred to 
tangential variables,  whereas the right side to normal 
variables. 
 

Figure 6 shows reports, for A Class, the obtained output 
(red points) and wanted ones. Notwithstanding the low value 
of convergence, the reliability of the nets is very poor. In 
addition, from any dataset, the classifier is not able to extract 
information concerning the kind of inner and divertor sensors.   
In this case, the reliability of the net is improved.  

V.   CONCLUSIONS 
In this paper, NNs for classifying magnetic measurements 

in Tokamak reactors are presented. Particularly, addressing 
our attention on ITER configuration, we have exploited MLP 
nets in order to solve the problem under study. The exploited 
approach shows a very strong adaptability of NNs with 
respect to the originally database. The improvement of results 
is carries out transforming some outer variables in inner or 
divertor ones (normal and tangential). Figure 7 shows the 
comparison of the results in terms of RMSE percentage.  
 
 
 
 
 

 

TABLE III 
SUMMARY OF OBTAINED RESULTS BY MEANS OF ALTERNATIVE APPROACH 

 A CLASS B CLASS C CLASS 
# Errors 48/240 53/240 65/240 

In 15 17 14 17 13 16 
Div 6 4 6 4 6 3 

# 
of

 
va

ri
ab

le
s 

co
rr

ec
tly

 
cl

as
si

fy
  

Out 64 86 60 86 52 85 
% error 20 22 27 
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Fig. 5 Neural Network alternatively used 
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Fig. 6 Classification of magnetic measurements by means of 

alternative approach: visualization of the obtained results  
 

 
 

 
Fig. 7 Comparison of the results in terms of RMSE. The alternative 

approach (squared point) performs better than the approach where no  
pre-processing takes place 

. 
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