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Abstract—Glaucoma diagnosis involves extracting three features 

of the fundus image; optic cup, optic disc and vernacular. Present 
manual diagnosis is expensive, tedious and time consuming. A 
number of researches have been conducted to automate this process. 
However, the variability between the diagnostic capability of an 
automated system and ophthalmologist has yet to be established. This 
paper discusses the efficiency and variability between 
ophthalmologist opinion and digital technique; threshold. The 
efficiency and variability measures are based on image quality 
grading; poor, satisfactory or good. The images are separated into 
four channels; gray, red, green and blue. A scientific investigation 
was conducted on three ophthalmologists who graded the images 
based on the image quality. The images are threshold using multi-
thresholding and graded as done by the ophthalmologist. A 
comparison of grade from the ophthalmologist and threshold is made. 
The results show there is a small variability between result of 
ophthalmologists and digital threshold.   

 
Keywords—Digital Fundus Image, Glaucoma Detection, Multi-

thresholding, Segmentation.   

I. INTRODUCTION 
LAUCOMA is an eye disease that affects middle to 
elderly adults that elevates intraocular pressure which 

progresses to damage the optic nerve. This will lead to 
irreversible blindness which is preventable if discovered at an 
early stage [3, 4, 22]. Medically glaucoma are detected using 
machine such as Optical Coherence Tomography (OCT), 
Heidelberg Retinal1 Tomography (HRT) and fundus camera. 
OCT and HRT are very expensive and not readily available in 
hospitals thus many glaucoma cases go undetected [5]. In the 
drive to find a cheaper glaucoma screening method, 
ophthalmologists revert to slit-lamp biomicroscopy [25]. 
However this method is time-consuming where the patient’s 
pupils need to be fully dilated and a subjective cup to disk area 
ratio is estimated to quantify the degree of cupping. This 
measurement remains essentially qualitative and yield 
inaccurate result where some cases of glaucoma are missed 
[27]. Moreover, the detection of early signs and progressive 
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glaucomatous is extremely difficult due to poor sensitivity and 
high inter and intra-observer variability [26]. This motivates 
researchers to look into diagnostic tool such as digital fundus 
camera which can accommodate large-scale and repetitive 
screening in hospitals and clinics [3, 4, 5].  

Glaucoma detection in fundus image diagnosis involves two 
measurements; 1.  Cup-to-Disc ratio (CDR) measurement by 
calculating the vertical cup height divided by vertical disc 
height [9]; 2. ratio of blood vessels area in inferior-superior 
side to area of blood vessel in the nasal-temporal side. Most 
researcher focuses only on the CDR [8, 28, 29, 30]. The CDR 
measurement is validated by comparing against normal fundus 
images. [26] found that the diagnostic accuracy of the 
optometrists in detecting glaucoma is high in specificity but 
lower for sensitivity. In the bid to to increase the sensitivity 
and specificity of the diagnosis, [7] developed a computer-
based glaucoma screening system which combines the optic 
nerve defects detection, visual field examination and expert 
system rules. However the optic cup is difficult and 
challenging to segment due to the unclear boundary between 
optic cup and optic rim [8, 9, 21]. This is further complicated 
by the high density of vascular architecture surrounding the 
optic region. 

The difficulty in segmenting the disk and cup has directed 
research in the area of image processing such as contrast 
enhancement (histogram specification [7], local contrast 
enhancement [24] and histogram equalization [20], image 
segmentation (region growing [22], thresholding [20] and 
deformable model [9, 22]) and edge detection (Canny edge 
detection [8]).  

Thresholding is the simplest image segmentation technique 
[17] known for its high processing speed, ease in manipulation 
and smaller storage space [18]. Thresholding method has 
proved to be successful in dividing pixels into several classes 
to distinguish objects from background [19].  It can be 
categorized as bi-level or multi-level depending on the number 
of image segments. Bi-level thresholding, segments image into 
two different regions [18]. Multi-thresholding on the other 
hand, segments image into background and multiple objects. It 
is especially important in segmenting multi-colored and 
uneven background illumination [19, 23]. Since the fundus 
images are colored, the idea of separating the red, green and 
blue channel is intriguing due to the fact that different channel 
highlights different anatomy of the eyes [28, 31]. 

Most automated computer assisted glaucoma detection 
performs segmentation on fundus images, faced localization 
problem. Thus, this introduced error in the measurements and 
consequently in the diagnosis [6].  The focus of this research 
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Fig. 3 Maximum and minimum Color Range 

B. Ophthalmologists Survey Result   
1) Comparison Between Ophthalmologist 

The gray channel, all the three ophthalmologists consensually 
agree that most images’ quality is in range from satisfactory to 
good as depicted in Fig. 4. However, certain amount of 
variability is detected among ophthalmologists for the 
satisfactory and good quality images.  Majority of the images 
are considered as good quality and none of the image quality 
is poor.  

Fig. 4 Ophthalmologists Grading Distribution of Grayscale Channel 
Images  

 
Fig. 5 shows that all the three ophthalmologists agree that 

majority of the red images are of poor quality with a few of 
the images are of good quality. There also exists some 
variability among the ophthalmologists.  

 

Fig. 5 Ophthalmologists Grading Distribution of Red Channel Images  
 

Almost all the ophthalmologists have the same opinion that 
the green channel produces a highly graded image quality and 
none of the images are of poor quality as shown in Fig. 6.  
 

Fig. 6 Ophthalmologists Grading Distribution of Green Channel 
Images  

 
Fig. 7 shows it is observed that there is a high variability 

among ophthalmologists evaluation of the image quality. Most 
of the images fall under satisfactory grade. 

 

 
Fig. 7 Ophthalmologists Grading Distribution of Green Channel 

Images  
 

2) Comparison between Frequency of Grade between 
Colors 

Table II shows the frequency percentage of the grade given 
by the three ophthalmologists for gray, red, green, and blue 
channel. Overall it is found that the red channel has the 
highest percentage of the poor image quality grade whereas 
the percentage of gray, green and blue is almost negligible. 
Gray and green channels have high frequency percentage of 
the good image quality where the green (95.2%) outperform 
the gray (60.2%) channel.  

 
TABLE II 

PERCENTAGE OF GRADE GIVEN BY OPHTHALMOLOGISTS BETWEEN COLOR 
CHANNELS   

IMAGE QUALITY GRAY RED GREEN BLUE 

POOR 1.5% 67.7% 0% 8.2% 

SATISFACTORY 38.3% 22.3% 4.8% 71% 

GOOD 60.2% 10% 95.2% 20.8% 
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C. Threshold  
Table III shows the frequency percentage of the grade given 

from observation of threshold image for gray, red, green, and 
blue. The red channel shows the weakest grade detection 
where it has the highest percentage of grade poor quality 
image while the other channel has very low percentage.  
Meanwhile, blue channel shows a high percentage of 
satisfactory quality images relative to other channels. The gray 
and green channels both have high percentage of good quality 
image where green supersede gray by fifteen percent.  

 
 TABLE III 

PERCENTAGE OF GRADE GIVEN AFTER MULTI-THRESHOLD  
IMAGE QUALITY GRAY RED GREEN BLUE 

POOR 2.2% 66.5% 2.2% 1.1% 
SATISFACTORY 36.8% 17.8% 21.2% 68% 

GOOD 61% 15.6% 76.6% 30.9% 
 

D. Comparison between Ophthalmologists Survey and 
Threshold Result 

Fig. 8 shows a comparison histogram between the opinion 
of the ophthalmologists and the digital outcome of 
thresholding.  

The first cluster of histogram shows overall result from gray 
channel images. It is found that the difference in frequency for 
poor, satisfactory and good images are almost negligible with 
values of 0.7%, 1.5%, and 0.8% as shown in Table IV. These 
differences indicate the variability between ophthalmologists 
and thresholding can be considered as insignificant. 

The second cluster in Fig. 8 shows the result from the red 
channel between ophthalmologists and thresholding. Both 
ophthalmologists and thresholding agrees that the red channel 
images are poor in quality. The difference in frequency 
between ophthalmologists and thresholding are 1.2%, 4.5% 
and 5.6% for poor, satisfactory and good images respectively 
as shown in Table IV. The variability of red images between 
ophthalmologists and thresholding can be considered as small. 

The third cluster in Fig. 8 depicts the frequency of the green 
channel images. Table IV shows the difference in frequency 
between ophthalmologists and thresholding are 2.2%, 16.4% 
and 18.6% for poor, satisfactory and good images 
respectively. The high variability of between ophthalmologists 
and thresholding is due to the inconsistency of classification of 
satisfactory and good green channel images. More images 
classified as saticfactory by thresholding in contrast are 
classified as good by ophthalmologists. This is due to the 
nature of human eye (more specific and sensitive), training, 
knowledge and experience of the ophthalmologists. In this 
experiment, thresholding is used as a representative for the 
digitize method. It is a simple segmentation technique hence 
the result is less accurate.  

The last histogram cluster in Fig. 8 shows overall result 
from blue channel images. Table IV shows the difference in 
frequency between ophthalmologists and thresholding are 
7.1%, 3.0% and 10.1% for poor, satisfactory and good images 
respectively. Ophthalmologists appear not to favor this image 
due to its low contrast where the image appears dark. 

However, the digital technique shows better results as higher 
number of images is classify as good quality. However, the 
variability between ophthalmologists and thresholding can still 
be considered as low. 

 
Fig. 8 Comparison histogram between the opinion of 

ophthalmologists and the digital outcome of thresholding 
 

TABLE IV 
PERCENTAGE DIFFERENCE BETWEEN OPHTHALMOLOGISTS OPINION AND 

THRESHOLDING  
CHANNEL POOR SATISFACTORY GOOD 

GRAY 0.7% 1.5% 0.8% 
RED 1.2% 4.5% 5.6% 

GREEN 2.2% 16.4% 18.6% 
BLUE 7.1% 3.0% 10.1% 

IV. CONCLUSION 
Based on the color range analysis, green is found to be a 

good contrast and bright image. Red is found to be the worst 
image as it has low contrast and bright image. The survey 
among the ophthalmologists shows an agreement of results in 
a green image analysis but the results highly varied in the blue 
image.  It is also found that the green image segmentation has 
better image quality than the gray image. The red images are 
rated as poor quality. In the threshold analysis, the green and 
gray images are at par. The red channel image is considered as 
poor quality image. Meanwhile, the blue channel image shows 
the lowest percentage of poor quality image.  The variability 
of Gray channel quality grading is the smallest among all 
channels, while the highest variability is recorded in the green 
channel. The blue channel shows a normal distribution of 
pixel value, but due to its low contrast, both ophthalmologists 
and threshold graded as low quality image. 
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