
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

536

Abstract—Fair share objective has been included into the goal-

oriented parallel computer job scheduling policy recently. However,
the previous work only presented the overall scheduling performance.
Thus, the per-user performance of the policy is still lacking. In this
work, the details of per-user fair share performance under the
Tradeoff-fs(Tx:avgX) policy will be further evaluated. A basic fair
share priority backfill policy namely RelShare(1d) is also studied.
The performance of all policies is collected using an event-driven
simulator with three real job traces as input. The experimental results
show that the high demand users are usually benefited under most
policies because their jobs are large or they have a lot of jobs. In the
large job case, one job executed may result in over-share during that
period. In the other case, the jobs may be backfilled for
performances. However, the users with a mixture of jobs may suffer
because if the smaller jobs are executing the priority of the remaining
jobs from the same user will be lower. Further analysis does not show
any significant impact of users with a lot of jobs or users with a large
runtime approximation error.

Keywords—deviation, fair share, discrepancy search, priority
scheduling.

I. INTRODUCTION

AIR share objective has been included in the goal-oriented
parallel computer job scheduling policy called Tradeoff-

fs(Tx:avgX), recently [1]. The impact of user request runtime
which is known to be inaccurate [2] was presented in [3]. The
policy was evaluated on several workloads with various
characteristics in [4]. In all these works, the regular scheduling
performances widely used in the field [5,6,7] such as average
wait time, 99th-percentile wait time, maximum wait time and
average slowdown were presented. In addition, the fair share
measures namely dev (i.e., deviation) was proposed to
measure the differences between the cumulated actual usage
and the cumulated entitled share of each user over a given fair
share window. However, the results presented in all previous
works focused on overall performances. In this work, the
details of per-user fair share performance under the Tradeoff-
fs(Tx:avgX) policy will be further evaluated.
 The remaining of this paper is organized as follows. Parallel
computer job scheduling problems and the current solutions
are described in Section 2. In Section 3, goal-oriented parallel
computer jobs scheduling policies are reviewed. In Section IV,
the experimental setting in this work including workloads,
policies and performance measures are described. In Section
V, the experimental results and discussions are presented.
Finally, the conclusions are given in Section VI.

S. Vasupongayya is with the Department of Computer Engineering, Prince

of Songkla University, Hat Yai, Songkhla, 90110, Thailand (e-mail:
vsangsur@coe.psu.ac.th phone: 66-74-287360; fax: 66-74-212895).

II. PARALLEL COMPUTER JOB SCHEDULING

Parallel computer job scheduling problem is a problem of
scheduling a job on a set of available computational nodes so
that each job will eventually be executed or cancelled by its
owner. Typically, the user must supply some job information
such as the number of requested computational nodes and the
estimated runtime of the jobs. The scheduler uses the job
information to make a scheduling decision when any
computational node becomes available. That is, when a job
arrives at the system or when a job leaves the system. In this
work, any of these two events will be called a ‘scheduling
decision point’.

To better explain the idea of the parallel computer job
scheduling problem, Figure 1 simulates a scheduling decision
point where the x-axis represented the time while the y-axis
represented the number of computational nodes. At the current
time (t1), the system has two running jobs which are job no. 1
and job no. 2. And, there is one waiting job which is job no.3.
If there is no arriving job during t1 and t2, the scheduler will be
activated at t2 because the job no.1 will be finished. Notice
that, the job runtime information at the current time is not
accurate because the job owner always gives an overestimated
runtime. Thus, the job no.2 may be finished before job no.1 on
the real system. Furthermore, the jobs can arrive at any time
which is known as an on-line setting. That is, the scheduler
will not know when the job will arrive making it difficult to
make a working schedule offline. Therefore, this inaccurate
information and on-line setting environment enhance the
challenge of solving any parallel computer job scheduling
problem.

Typically, the production parallel computer job scheduler is
either a queue-based scheme [8,9,10] where each job is
assigned to a waiting job queue by its characteristic or a job-
based scheme [11,12,13], where all jobs are prioritized based
on a weighted function of a set of pre-defined job measures.
The difficulties of these schemes are the low-level parameter
tuning process. For example for the job-based scheme, the
system administrator must define what job measure to use in
the weighted function in order to achieve a desired
performance. The parameters sometime are not directly related
to the scheduling performances. For example, to prevent a
starvation problem the system administrator may use wait time
of each job as the job measure to indicate the starvation
problem. That is, the job should not wait too long otherwise
the system may be in a starvation state. As a result, the system
administrator must fine tune the parameters every time that
something is changed such as a change in objectives, a change
in workload characteristics, etc.

Evaluating per-user Fairness of Goal-Oriented
Parallel Computer Job Scheduling Policies

Sangsuree Vasupongayya

F

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

537

Fig. 1 Simplified parallel computer job scheduling problem

III. GOAL-ORIENTED PARALLEL COMPUTER JOB SCHEDULING

To reduce the task of tuning the low-level scheduling
parameters, the goal-oriented parallel computer job scheduling
policy (Tradeoff(Tx:avgX) was proposed [14, 15]. The policy
has been shown to achieve good scheduling performances
under conflicting objectives. The policy also achieves good
performances under both single partition systems and multiple
partition systems [16]. Recently, the fair share objective was
included in the goal-oriented parallel computer job scheduling
policy [1]. The newly designed goal-oriented policy also
achieves good scheduling performances and fair share
performances under both accurate and inaccurate runtime and
under various workload characteristics.

The main idea of the goal-oriented parallel computer job
scheduling policy is to replace the task of tuning low-level
scheduling parameters for performances using a search engine.
By giving a set of objectives, the search engine traverses the
space of solutions to find a ‘good’ solution within a certain
time limit. Since the search space can be very large, the search
engine must quickly find a ‘good’ solution and quickly discard
a ‘bad’ one. To do so, a discrepancy based search technique,
namely depth bounded discrepancy based search or DDS [17],
is selected.

Under the goal-oriented parallel computer job scheduling
policy, all waiting jobs at the current decision point are
organized into a tree. Figure 2 shows a partial tree of five
waiting jobs (i.e., job no. 1, job no. 2, job no. 3, job no. 4, and
job no. 5) according to their arriving order. From depth 1 to
the leaf node, only the left most branches are shown. At each
level the jobs are ordered from left to right using a branching
heuristic. In the figure, the jobs are ordered according to the
first-come-first-serve or FCFS branching heuristic.

At each decision point, the tree of waiting jobs is organized.
The search engine, then, walks on this tree to find a ‘good’
solution. The search engine starts from the first left node at the
first left node at the first depth and find the best available time
slot for the job to be scheduled. The first job is then assigned
that time slot. The search engine follows the left most path
until it reaches the left node.

That is, one complete solution is found. The score of this
first solution is, then, calculated and saved as the best solution
found so far. The performance impacts of various scoring
modules are presented in [18]. The next path discovered will
be according to the DDS algorithm which is the path with the
discrepancy at the first depth. Once the next solution is found,
its score will be calculated and compared with the best score
so far. If the new solution is better, the new solution is kept as
the best solution.

To illustrate the DDS algorithm, Figure 3 shows the order
of paths discovered on a tree of three waiting jobs. The first
path discovered is the heuristic path which is the left most
path. This path follows the branching heuristic which is a
reason to be called the ‘heuristic path’. The next path (denoted
no. 2 in the figure) is the left-most path of the first discrepancy
node at the first depth. The next path (denoted no. 3 in the
figure) is the next path of the next discrepancy node at the first
depth. After the first three paths are discovered, the search
moves to the discrepancy at the next level (i.e., depth 2). Path
no. 4 is discovered next because it is the left-most path of the
discrepancy paths at depth 2. Next, the search will discover
path no.5 and path no.6.

Fig. 2 A partial tree of five waiting jobs

Fig. 3 the DDS order of paths discovered on a tree

As can be seen that the job on the left node will be

discovered before the job on the right node, the order of jobs
has a significant impact on the search engine.

 1 4 2 5 3 6

5 4

4 5

3 4 5

2 3 4 5

1 2 3 4 5 Depth 1

Depth 2

Depth 3

Depth 4

Depth 5

Job no.1

Job no.2

Job no.3

P
ro

ce
ss

or
s

Time

t0 t1 t2 t3

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

538

Tradeoff-fs(Tx:avgX) policy includes fair share objective
by ordering jobs according to the fair share measure. As a
result, the policy can achieve both good scheduling
performances and good fair share performances.

Furthermore, the very first job considered by the scheduler
can have a significant impact on the remaining jobs because it
will limit the available space on the system for the remaining
jobs. Thus, discovering jobs according to DDS can help
reduce this impact because the discrepancy at the first depth
will be searched first before the discrepancy lower level of the
tree. As a result, each job will have a chance to be the first job
considered. If doing so can result in a better solution, that
solution will be selected as the best solution found so far.

With the separation between the objectives and the search
engine, the goal-oriented parallel computer job scheduling
policy can reduce the administrator bundle of parameter
tuning tasks for performances.

IV. EXPERIMENTAL SETTING AND MEASURES

 The per-user fair share measures and scheduling
performances of each user under the goal-oriented parallel
computer job scheduling policy namely Tradeoff-fs(Tx:avgX)
is evaluated in details. Another policy to be evaluated against
the goal-oriented policy is the RelShare(1d) which will be
described next. The results are collected from an event-driven
simulator with real job traces from three production parallel
computer centers as input. The workload information is
presented in the next subsection.
 To be realistic, a warm up and a cool down periods are
included in the simulation. The simulation is done one month
at a time with a one-week warm up (i.e., jobs from the
previous month) and a cool down period (i.e., jobs from the
next month continue to arrive). The experiments are conducted
under both accurate and inaccurate runtime situations. The
per-user fair share measures are evaluated against the accuracy
of the user runtime approximation and the amount of resources
requested by the user. These topics are still lacking in the
previous work [1] because the previous work only focused on
comparing the overall performances of the Tradeoff-
fs(Tx:avgX) against other policies. Thus, the performance
analysis aimed at demonstrating fairness of the scheduler on
the users with high demand. These additional factors are
evaluated, in this work, to further understand the strength and
weakness of the fair share goal-oriented parallel computer job
scheduling policies.

A. Workloads

There are three real job traces in this study. The first job
trace is a ten-monthly workload that ran on an Intel Itanium
Linux cluster (IA-64) at the National Center for
Supercomputing Applications at the University of Illinois at
Urbana-Champaign during June 2003 to March 2004. The
second job trace is a ten-monthly KTH workload [19]. The last
job trace is a twelve-monthly SDSC workload [19]. Table 1
shows the workload characteristic in each month of each job
trace. The information presented includes total demand (Proc.
demand), number of users (#users), number of jobs (#jobs),
average job size (i.e., NT: nodes-hour, N: computational

node, T: runtime in hours), and per-user information of
average number of jobs and average demand in node-hours.

TABLE I

INFORMATION OF EACH JOB TRACE
IA-64 workload

 avg.
job size

(node-hours)

avg. per user

Month
Proc.

demand

#users

#jobs

#jobs

demand
6/03 82% 73 2191 34.5 30.0 1034.7
7/03 89% 68 1400 60.6 20.6 1247.4
8/03 79% 73 3221 23.4 44.1 1031.6
9/03 72% 74 3057 21.7 41.3 895.5
10/03 71% 75 4149 16.3 55.3 899.5
11/03 73% 81 3443 19.5 42.5 827.1
12/03 74% 61 3521 20.1 57.7 1159.3
1/04 73% 53 3156 22.1 59.5 1313.6
2/04 74% 73 3969 16.6 54.4 900.3
3/04 75% 70 3466 20.6 49.5 1018.0

KTH workload
 avg.

job size
(node-hours)

avg. per user

Month
Proc.

demand

#users

#jobs

#jobs

demand
10/96 69% 68 2404 21.4 34.5 755.44
11/96 69% 66 1990 25.2 33.5 761.07
12/96 65% 69 2299 21.3 35.0 709.38
1/97 76% 65 2939 19.3 33.0 870.7
2/97 76% 75 2916 17.7 38.0 688.01
3/97 74% 69 2081 26.8 35.0 807.49
4/97 70% 83 2860 17.7 42.0 610.53
5/97 68% 80 4080 12.5 40.5 637.98
6/97 72% 58 2697 19.5 29.5 905.29
7/97 62% 59 2182 21.4 30.0 790.91

SDSC workload
 avg.

job size
(node-hours)

avg. per user

Month
Proc.

demand

#users

#jobs

#jobs

Demand
6/00 75% 120 7043 89.5 60.5 5251.6
7/00 72% 117 5607 110.9 59.0 5313.8
8/00 77% 141 5433 122.9 71.0 4736.1
9/00 60% 118 5172 97.8 59.5 4285.2
10/00 68% 119 4234 139.4 60.0 4959.4
11/00 70% 115 4132 141.5 58.0 5085.7
12/00 62% 107 3187 167.8 54.0 4998.9
1/01 62% 113 5963 90.5 57.0 4775.8
2/01 72% 128 6912 81.0 64.5 4372.2
3/01 70% 143 6206 97.5 72.0 4229.8
4/01 76% 132 7167 88.1 66.5 4783.4
5/01 83% 151 8428 81.8 76.0 4563.4

B. Policies

The Tradeoff-fs(Tx:avgX) will be evaluated against a basic
priority backfill policy namely RelShare(1d) as proposed in
[20]. RelShare(1d) policy considers jobs for scheduling
according to the fair share measure of the job’s owner. The
backfill technique [21] is added to allow some out of priority
order scheduling results. That is, some low priority jobs can be
scheduled to execute on available nodes if its executions do
not affect the executions or scheduled executions of higher
priority jobs. The fair share priority is the ratio of the entitled
share to the actual cumulated usage dynamically computed
over a one-day window. One-day window is a typical fair
share window value on several production schedulers
[8,9,12,13]. Goal-oriented parallel computer job scheduling
policies (Tradeoff-fs(Tw:avgX)) is described in Section III.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

539

That is, Tradeoff-fs(Tw:avgX) is covered a fair share
objective by using the fair share priority as the branching
heuristic when organized the search tree. In addition to the fair
share objective, the goal-oriented policies considered two
objectives—preventing starvation and minimizing average
measures.

C. Performance Measures

Both overall performances and per-user performances are
considered in this study. The focused performance is the per-
user fair share measure namely deviation or dev for short [20]
which calculates the differences between the entitled share and
the actual cumulated usage. Thus, the positive dev value
means the over-share and the negative dev value means the
under-share. The widely used scheduling performances such
as the wait time and slowdown time will also be presented in
some arguments. More overall scheduling performances and
overall fair share performances were presented in previous
works [1].

V. RESULTS AND DISCUSSION

Table II shows the dev performance provided by each
policy under both actual runtime information (T) and
approximate runtime information (R) of the highest demand
user of each month of the IA-64 workload. Table 3 shows the
same information of the KTH workload while Table 4 shows
that of the SDSC workload. Table 5-7 show the overall dev
performances of the two policies on IA-64, KTH and SDSC
workloads, respectively. Table 8-10 show the overall average
wait time performance of the two policies on IA-64, KTH and
SDSC workloads, respectively. Table 11-12 show the overall
scheduling performances of the two policies on 06/03 IA-64
workload and 06/00 SDSC workload, respectively.

According to the results shown in Table 2, these users are
mostly over-share under most cases. The very interesting
points are the performances of the goal-oriented policy on
06/03, 09/03, 10/03, 01/04, 02/04 and 03/04 months. That is,
the goal-oriented policy provides higher per-user dev
performances than that produced by the RelShare policy.
However, the overall absolute dev data shown in Table 5
shows that the goal-oriented policy provides lower total
absolute dev performances in all months except 06/03 under
inaccurate runtime information. According to the scheduling
performance of all policies on 06/03 month, the goal-oriented
policy achieves good scheduling performances. Thus, the
goal-oriented policy trades dev performances for scheduling
performances in this case. As a result, some jobs are receiving
exceed resources because doing so will result in a better
overall scheduling performance which is parts of the objective
considered.

For the results of KTH workload, the high demand users do
not always over-share under the goal-oriented policy. User
no.3 on 10/96 month has an average job size at 244.4 node-
hours and all 38 jobs of this user require 80 computational
nodes which is the largest of this month. As a result, this user
suffered under the basic priority backfill policy (i.e.,
RelShare(1d)).

However, the goal-oriented policy can reduce the under-
share of this user. There are four months that the goal-oriented
policy produces larger dev values than that produced by the
RelShare(1d) policy. These months are 11/96, 02/97, 05/97
and 07/97. However, overall absolute dev performance of all
policies of each month in Table 5 shows that the goal-oriented
policy is fair because it reduces the total absolute deviation of
all users.

TABLE II

PER-USER DEV PERFORMANCE OF THE HIGHEST DEMAND USER OF EACH

MONTH OF IA-64 WORKLOAD

Month
User
No.

RelShare(1d) Tradeoff-fs(Tx:avgX)
T R T R

06/03 49 1131 2951 5309 6605
07/03 3 6227 5920 2778 5447
08/03 3 4041 3795 3742 3464
09/03 3 1757 353 4762 3563
10/03 118 1101 543 1150 1198
11/03 3 2251 4390 1355 1924
12/03 103 3249 3349 967 1287
01/04 3 3459 -70 5007 1109
02/04 171 85 3427 -1150 -2441
03/04 42 1764 -187 2247 3185

TABLE III

PER-USER DEV PERFORMANCE OF THE HIGHEST DEMAND USER OF EACH

MONTH OF KTH WORKLOAD

Month
User
No.

RelShare(1d) Tradeoff-fs(Tx:avgX)
T R T R

10/96 3 -7730 -6899 -156 -93
11/96 6 -203 -554 -1607 -1281
12/96 6 145 -669 -11 394
01/97 15 1132 1614 230 444
02/97 84 4878 3996 4311 4858
03/97 84 4154 4125 354 329
04/97 14 -1062 -383 -411 -284
05/97 67 -274 -450 -515 -677
06/97 29 -1451 -1411 221 220
07/97 67 -8 -78 155 118

TABLE IV

PER-USER DEV PERFORMANCE OF THE HIGHEST DEMAND USER OF EACH

MONTH OF SDSC WORKLOAD

Month
User
No.

RelShare(1d) Tradeoff-fs(Tx:avgX)
T R T R

06/00 246 4737 -800 14515 -646
07/00 151 12241 7924 7989 3151
08/00 151 10309 10133 4510 7477
09/00 273 13851 -7017 15642 11092
10/00 95 -889 -7625 9937 10457
11/00 95 -1646 1364 24347 27580
12/00 95 -3748 1008 2666 8332
01/01 99 12975 12967 2630 -8372
02/01 174 -2040 20655 5554 16173
03/01 174 -11530 12333 3430 7035
04/01 101 -1227 -571 11828 11849
05/01 101 545 4983 -264 -1090

Another interesting point is user no.6 in 11/96 month which

suffers under the goal-oriented policy while this user does not
suffer as much under RelShare policy. This user has 75
medium size job (i.e., average job size is 114 node-hours).
However, these jobs are a mixture of 2 to 64 nodes with an
average runtime of 5.8 hours.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

540

Thus, this user is an example of the goal-oriented policy
weakness presented in the previous work [1]. That is, a user
with a mixture of jobs may suffer because his/her small jobs
can be backfilled resulting in a lower fair share priority. Thus,
the larger jobs will be affected by this change because the jobs
will be considered for scheduling after a lot of jobs (from
other higher priority users).

Similar to the results of IA-64 workload, the high demand
users of each month of the SDSC workload are mostly
benefited under the goal-oriented policy, according to the data
presented in Table 4. The overall absolute dev performances
in Table 7 also shows that the goal-oriented policy produces
lower total dev performances than that produced by
RelShare(1d) on most months, except 06/00. According to the
scheduling performances of each policy on 06/00 SDSC
workload shown in Table 9, the goal-oriented policy trades the
dev performances for the scheduling performances.

TABLE V

OVERALL ABSOLUTE DEV PERFORMANCE ON IA-64 WORKLOAD

Month
RelShare(1d) Tradeoff-fs(Tx:avgX)

T R T R
06/03 20813 28561 19832 29986
07/03 72789 85083 61553 72520
08/03 103526 123068 90127 106287
09/03 131350 152926 116515 136603
10/03 148315 174058 132585 153869
11/03 170053 201312 146209 170737
12/03 195094 223434 161359 190893
01/04 225696 250236 182672 210067
02/04 259492 294952 197859 231871
03/04 284678 331111 219018 261493

TABLE VI

OVERALL ABSOLUTE DEV PERFORMANCE ON KTH WORKLOAD

Month
RelShare(1d) Tradeoff-fs(Tx:avgX)

T R T R
10/96 23722 23876 11226 12456
11/96 45622 47507 26445 27733
12/96 63754 65695 39754 42806
01/97 82059 86580 52261 56912
02/97 102119 108646 68986 76068
03/97 125979 136087 85437 92557
04/97 139846 150409 94788 102476
05/97 148431 158745 103636 109483
06/97 155120 166703 109049 115794
07/97 160202 172427 112956 119368

TABLE VII

OVERALL DEV PERFORMANCE ON SDSC

Month
RelShare(1d) Tradeoff-fs(Tx:avgX)

T R T R
06/00 127867 122842 136207 139704
07/00 290361 289481 266049 289369
08/00 441725 479307 367728 343707
09/00 554176 581898 472440 478405
10/00 687519 717063 595267 606284
11/00 729824 773483 675065 713440
12/00 834837 883556 757964 819434
01/01 984392 1044091 845105 922062
02/01 1116066 1244936 959343 1061431
03/01 1229301 1416714 1051635 1174007
04/01 1436186 1648090 1198499 1315528
05/01 1674706 2026606 1273787 1466926

TABLE VIII
SCHEDULING PERFORMANCES ON 06/03 IA-64 WORKLOAD

Measure

RelShare(1d) Tradeoff-fs(Tx:avgX)
T R T R

Avg. Wait 4.7h 7.6h 4.1h 4.9h
Max. Wait 104.5h 163.4h 48.8h 61.5h

Avg. Slowdown 29.6 42.8 27.6 36.3

TABLE IX

SCHEDULEING PERFORMANCES ON 06/00 SDSC WORKLOAD

Measure
RelShare(1d) Tradeoff-fs(Tx:avgX)

T R T R
Avg. Wait 0.8h 0.9h 0.7h 0.8h
Max. Wait 94.2h 102.8h 38.9h 103.3h

Avg. Slowdown 7.9 13.1 6.9 12.9

 In conclusion, the results in this section show that the per-

user deviation of most high demand users is mostly over-
share. Since these users are either have large jobs or have a lot
of jobs, their jobs will eventually be scheduled or backfilled.
However, the goal-oriented parallel computer job scheduling
policies can provide the lowest total absolute deviation values
on most months. For a few months with slightly higher
absolute deviation values observed, the goal-oriented policy
trades these fair share performances for scheduling
performances.

Further analysis of the users with a lot of jobs and the users
with a set of slightly large jobs found the followings. The
number of jobs does not strongly affect the goal-oriented
policy performances. The users with a set of slightly large
jobs, however, can be suffered under the goal-oriented policy
because their jobs may be difficult to be backfilled. In
addition, if a few of their smaller jobs are scheduled then
user’s fair share priority will be reduced. Thus, the larger jobs
will then be low priority jobs. As a result, these jobs may need
to wait longer which may lead to an under-share performance.
If the jobs are not too large to be backfilled, however, the
job’s owner may be benefited. This is because the jobs may be
backfilled for performances under the goal-oriented policy.
The study also shows that the accuracy of the users provided
runtime information and the number of jobs the user has, do
not produce any significant impact on the per-user
performance of the goal-oriented policy.

VI. CONCLUSIONS

This study presents and analyzes the per-user performances
of Tradeoff-fs(Tx:avgX) i.e., the extending goal-oriented
parallel job scheduling policy to cover fair share objective by
applying the fair share priority as a branching heuristic.
Tradeoff-fs(Tx:avgX) and RelShare(1d) are evaluated using
an event-driven simulator. Three real job traces are used as
input to the simulator. The per-user performances of the high
demand users on each month of each workload are studied in
details. Furthermore, the most-submitted-job users and the
users with a large error in their runtime information are also
analyzed.

The experimental results show that these users are usually
benefited (over-share) under most situations because their jobs
are either large or they have a lot of jobs. In the large job case,
one job executed may result in over-share during that period.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

541

In the other case, the jobs may be backfilled for performances.
Thus, only the users with a mixture of jobs may suffer because
if the smaller jobs are executing the priority of the remaining
jobs from the same user will be lower. Therefore, the users
with mixture of jobs should separate their jobs over a period of
time under the goal-oriented policy for a better performance
according to their share. Further analysis does not show any
significant difference or impact of users with a lot of jobs or
users with a large runtime approximation error.

The results presented in this work are further confirmed that
the Tradeoff-fs(Tw:avgX) policy does achieve good fair share
performances and scheduling performances. Even though
some high demand users without a mixture of large and small
jobs may be benefited, it does not result in a worst overall
scheduling or fair share performances.

REFERENCES
[1] S. Vasupongayya, "Achieving fair share objectives via goal-oriented

parallel computer job scheduling policies", Proc. WASET ICCSE'09,
Bangkok, Thailand, December 25-27, 2009.

[2] S.-H. Chiang, A. Arpaci-Dusseau and M. Vernon. "The impact of more
accurate request runtimes on production job scheduling performance". In
Lecture Notes in Computer Science (2537):103-127, 2002.

[3] S. Vasupongayya, "Impact of User Runtime Estimates on Achieving
Fair Share Objectives", Proc. TISD, Nong Khai, Thailand, March 4-6,
2010.

[4] S. Vasupongayya, "Impact of Workloads on Fair Share Policies", Proc.
ANSCSE14, Chiang Rai, Thailand, March 23-26, 2010.

[5] S.-H. Chiang and C. Fu. "Benefit of limited time-sharing in the presence
of very large parallel jobs". In proceedings of the IEEE International
Parallel and Distributed Processing Symposium, 2005.

[6] S.-H. Chiang and M. Vernon. "Production job scheduling for parallel
shared memory systems". In proceeding of the IEEE International
Parallel and Distributed Processing Symposium, 2001.

[7] D. Talby and D. Feitelson, "Supporting priorities and improving
utilization of the IBM SP2 scheduler using slack-based backfilling". In
proceeding of the International Parallel Processing Symposium, 1999.

[8] OpenPBS, http://www.nas.nasa.gov/Software/PBS/
[9] PBS pro, http://www.pbspro.com
[10] LSF, http://www.platform.com/product/ lsffamily.
[11] D. Jackson, Q. Snell & M. Clement. "Core algorithms of the MAUI

scheduler". In proceeding of the Workshop on Job Scheduling Strategies
for Parallel Processing, 2001.

[12] Maui scheduler, http://www.supercluster.org/maui
[13] Moab scheduler, http://www.clusterresources.com/products/mwm/

docs/moabadminguide450.pdf
[14] S. Vasupongayya, S.-H Chiang and B. Massey, "Search-based job

scheduling for parallel computer workloads", In proceeding of the IEEE
Cluster, Boston, MA, 2005.

[15] S.-H. Chiang and S. Vasupongayya, "Design and potential performance
of goal-oriented job scheduling policies for parallel computer
workloads". In the IEEE Transaction on Parallel and Distributed
Systems. 19(12):1642-1656, 2009.

[16] A. Prasitsupparote & S. Vasupongayya, "Impact of Multi-partition
Systems on Goal-oriented Parallel Computer Job Scheduling Policies"
JCSSE2010, Bangkok, Thailand, 2010.

[17] T. Walsh, “Depth-bounded discrepancy search” Proc. Of International
joint conference in Artificial Intelligence, 1997.

[18] S. Vasupongayya and S.-H. Chiang. "Multi-objective models for
scheduling jobs on parallel computer systems". In proceeding of IEEE
Cluster, Barcelona, Spain, 2006.

[19] Parallel workload archieve, available at http://www.cs.huji.ac.il/labs/
parallel/workload.

[20] S. Vasupongayya, "Impact of fair share and its configurations on parallel
job scheduling algorithms". (to appear). In proceeding of the 2009
WASET International Conference on High Performance Computing,
Venice, Italy, October 2009.

[21] D.Lifka, “The ANL/IBM SP Scheduling System”, Proc. First Job
Scheduling Strategies for Parallel Processing (JSSP’95), 1995.

Sangsuree Vasupongayya received a Bachelor of Engineering in
Computer Engineering from Prince of Songkla University, a Master of
Science in Computer Science from California State University Chico and a
Ph.D. degree in Computer Science from Portland State University. Currently,
Dr. Vasupongayya is an assistant professor and the associate department head
for academic affairs at the computer engineering department, Faculty of
Engineering, Prince of Songkla University. Interested research areas include
resource scheduling, cryptography, E-Learning and engineering curriculum
and education.

