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Il. PARALLEL COMPUTER JOB SCHEDULING

Abstract—Fair share ObjeCtiVe has been included into thé—goa Parallel Computer Job Schedu”ng prob'em is a mnbbf

oriented parallel computer job scheduling policgergly. However,
the previous work only presented the overall scliegyperformance.
Thus, the per-user performance of the policy i Isttking. In this
work, the details of per-user fair share perforneanmder the
Tradeoff-fs(Tx:avgX) policy will be further evaliad. A basic fair
share priority backfill policy namely RelShare(lid) also studied.
The performance of all policies is collected useig event-driven
simulator with three real job traces as input. €kRperimental results
show that the high demand users are usually bedefihder most
policies because their jobs are large or they lzala of jobs. In the
large job case, one job executed may result in-skiare during that
period. In the other case, the jobs may be baeHfillfor
performances. However, the users with a mixturploé may suffer
because if the smaller jobs are executing theipyiof the remaining
jobs from the same user will be lower. Further gsialdoes not show
any significant impact of users with a lot of jafisusers with a large
runtime approximation error.

scheduling a job on a set of available computationdes so
that each job will eventually be executed or cdedeby its
owner. Typically, the user must supply some joloiinfation
such as the number of requested computational remtshe
estimated runtime of the jobs. The scheduler ukesjab

information to make a scheduling decision when any

computational node becomes available. That is, wingab
arrives at the system or when a job leaves thesysin this
work, any of these two events will be called a &sbhiing
decision point’.

To better explain the idea of the parallel compyjter
scheduling problem, Figure 1 simulates a scheduiggjsion
point where the x-axis represented the time whike y-axis
represented the number of computational nodeshedttirrent
time (&), the system has two running jobs which are jobIno

Keywords—deviation, fair share, discrepancy search, prioritd job no. 2. And, there is one waiting job whiob no.3.

scheduling.

|. INTRODUCTION

AIR share objective has been included in the goigrted

parallel computer job scheduling policy called Teafl-
fs(Tx:avgX), recently [1]. The impact of user requeuntime
which is known to be inaccurate [2] was presentef8]. The
policy was evaluated on several workloads with oasi
characteristics in [4]. In all these works, theuleg scheduling
performances widely used in the field [5,6,7] sashaverage
wait time, 99th-percentile wait time, maximum wtihe and
average slowdown were presented. In addition, direshare
measures namely dev (i.e., deviation) was proposed
measure the differences between the cumulated|acsage
and the cumulated entitled share of each useragéren fair
share window. However, the results presented ipravious
works focused on overall performances. In this wdhie
details of per-user fair share performance underTitadeoff-
fs(Tx:avgX) policy will be further evaluated.

The remaining of this paper is organized as fadloRarallel
computer job scheduling problems and the currehitisos
are described in Section 2. In Section 3, goalnbeié parallel
computer jobs scheduling policies are reviewedénation 1V,
the experimental setting in this work including Woads,
policies and performance measures are describefedtion
V, the experimental results and discussions areepted.
Finally, the conclusions are given in Section VI.
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of Songkla University, Hat Yai, Songkhla, 90110,aifand (e-mail:
vsangsur@coe.psu.ac.th phone: 66-74-287360; fax46512895).

If there is no arriving job during ind §, the scheduler will be

activated at,t because the job no.1 will be finished. Notice

that, the job runtime information at the curremhdiis not
accurate because the job owner always gives arestumated
runtime. Thus, the job no.2 may be finished befobeno.1 on
the real system. Furthermore, the jobs can arriveng time
which is known as an on-line setting. That is, titheduler
will not know when the job will arrive making it ficult to
make a working schedule offline. Therefore, thiaccurate
information and on-line setting environment enharibe
challenge of solving any parallel computer job shtlieg
problem.

Typically, the production parallel computer job sdhler is

either a queue-based scheme [8,9,10] where eachisjob

assigned to a waiting job queue by its characterast a job-

based scheme [11,12,13], where all jobs are peedtbased
on a weighted function of a set of pre-defined jobasures.
The difficulties of these schemes are the low-Igaiameter
tuning process. For example for the job-based sehehe
system administrator must define what job measarese in
the weighted function
performance. The parameters sometime are not ljiretated
to the scheduling performances. For example, tvemtea
starvation problem the system administrator mayweétime

of each job as the job measure to indicate thevaian

problem. That is, the job should not wait too lastherwise
the system may be in a starvation state. As atrdbel system
administrator must fine tune the parameters evieng that
something is changed such as a change in objectwetange
in workload characteristics, etc.

in order to achieve a desired
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Fig. 1 Simplified parallel computer job schedulprgblem

has been shown to achieve good scheduling perfa@san

under conflicting objectives. The policy also asfei® good
performances under both single partition systendsranltiple
partition systems [16]. Recently, the fair shargective was
included in the goal-oriented parallel computer $gaheduling
policy [1]. The newly designed goal-oriented polieyso
achieves good scheduling performances and fair esh
performances under both accurate and inaccuratenei@nd
under various workload characteristics.

The main idea of the goal-oriented parallel compijbé
scheduling policy is to replace the task of tuniog-level
scheduling parameters for performances using &lsesgine.
By giving a set of objectives, the search engiaeédrses the
space of solutions to find a ‘good’ solution withéncertain
time limit. Since the search space can be veryelatge search
engine must quickly find a ‘good’ solution and ddicdiscard
a ‘bad’ one. To do so, a discrepancy based seantinigue,
namely depth bounded discrepancy based search 8r[DL),
is selected.

Under the goal-oriented parallel computer job scliad
policy, all waiting jobs at the current decisionimoare
organized into a tree. Figure 2 shows a partia¢ wé five
waiting jobs (i.e., job no. 1, job no. 2, job ng.j& no. 4, and
job no. 5) according to their arriving order. Fralapth 1 to
the leaf node, only the left most branches are shaw each
level the jobs are ordered from left to right usagpranching
heuristic. In the figure, the jobs are ordered atiog to the
first-come-first-serve or FCFS branching heuristic.

At each decision point, the tree of waiting jobsiiganized.
The search engine, then, walks on this tree to &irndood’
solution. The search engine starts from the feftriode at the
first left node at the first depth and find the tomgailable time
slot for the job to be scheduled. The first jolthien assigned

until it reaches the left node.

That is, one complete solution is found. The saafr¢his
first solution is, then, calculated and saved ashibst solution
found so far. The performance impacts of variousring
modules are presented in [18]. The next path seea will
be according to the DDS algorithm which is the paith the
discrepancy at the first depth. Once the next soius found,
its score will be calculated and compared with llest score
so far. If the new solution is better, the new 8oluis kept as
the best solution.

To illustrate the DDS algorithm, Figure 3 shows thrder
of paths discovered on a tree of three waiting .jditee first
path discovered is the heuristic path which is léfe most
path. This path follows the branching heuristic ethis a
reason to be called the ‘heuristic path’. The path (denoted
no. 2 in the figure) is the left-most path of tivstfdiscrepancy
node at the first depth. The next path (denoted3nmm the
figure) is the next path of the next discrepancgenat the first
depth. After the first three paths are discoverbé, search
lll.  GOAL-ORIENTED PARALLEL COMPUTER JOB SCHEDULING  moves to the discrepancy at the next level (i.eptld 2). Path

To reduce the task of tuning the low-level scheduli no. 4 is discovered next because it is the lefttmash of the
parameters, the goal-oriented parallel computesf@teduling discrepancy paths at depth 2. Next, the searchdigtiover
policy (Tradeoff(Tx:avgX) was proposed [14, 15].€Tholicy path no.5 and path no.6.

1 2 3 4 5 Depth 1
r \ Depth 5
2 3 4 5
3 4 5 Depth 3
Depth 4
4 5
5 4 Depth 5

Fig. 2 A partial tree of five waiting jobs

1 4 2 5 3 6

Fig. 3 the DDS order of paths discovered on a tree

: : As can be seen that the job on the left node wél b
that time slot. The search engine follows the tafist path giscovered before the job on the right node, thkeoof jobs
has a significant impact on the search engine.
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Tradeoff-fs(Tx:avgX) policy includes fair share etijive
by ordering jobs according to the fair share measis a
result,
performances and good fair share performances.

Furthermore, the very first job considered by tbleesluler
can have a significant impact on the remaining jobsause it
will limit the available space on the system foe tiemaining
jobs. Thus, discovering jobs according to DDS caiph
reduce this impact because the discrepancy atirstedepth
will be searched first before the discrepancy lolegel of the
tree. As a result, each job will have a chanceetthie first job
considered. If doing so can result in a better tgmhy that
solution will be selected as the best solution tbsa far.

With the separation between the objectives andsdaech
engine, the goal-oriented parallel computer jobedditing
policy can reduce the administrator bundle of patam
tuning tasks for performances.

IV. EXPERIMENTAL SETTING AND MEASURES

The per-user fair share measures and
performances of each user under the goal-orientedllpl
computer job scheduling policy namely Tradeoff-fs@vgX)
is evaluated in details. Another policy to be easdd against
the goal-oriented policy is the RelShare(1d) whieli be
described next. The results are collected fromvemtedriven
simulator with real job traces from three productiarallel
computer centers as input. The workload informatisn
presented in the next subsection.

To be realistic, a warm up and a cool down periats
included in the simulation. The simulation is dame month
at a time with a one-week warm up (i.e., jobs frone
previous month) and a cool down period (i.e., jfiosn the
next month continue to arrive). The experimentscareducted
under both accurate and inaccurate runtime situstid@he
per-user fair share measures are evaluated agianatcuracy
of the user runtime approximation and the amoumesburces
requested by the user. These topics are still hgcln the
previous work [1] because the previous work onlgufged on
comparing the overall
fs(Tx:avgX) against other policies. Thus, the perfance
analysis aimed at demonstrating fairness of theduder on
the users with high demand. These additional factme
evaluated, in this work, to further understand strength and
weakness of the fair share goal-oriented paratieiputer job
scheduling policies.

A.  Workloads

There are three real job traces in this study. fits¢ job
trace is a ten-monthly workload that ran on anllitenium
Linux cluster (IA-64) at the National
Supercomputing Applications at the University dinbis at

scheduling

performances of the Tradeoff-

Center for

node, T: runtime in hours), and per-user informatiof
average number of jobs and average demand in nmgs-h

the policy can achieve both good scheduling

TABLE |
INFORMATION OF EACH JOB TRACE
I1A-64 workload

avg. avg. per ust
Proc. job size
Month demand #users #jobs (node-hours)#jobs demand
6/03 82% 73 2191 345 30.0 1034.7
7/03  89% 68 1400  60.6 20.6 1247.4
8/03 79% 73 3221 234 44.1 1031.6
9/0:  72% 74 3057 21 41.3 895.t
10/0: 71% 75 414¢ 16.2 55.2 899.t
11/03 73% 81 3443 195 425 827.1
12/03 74% 61 3521 20.1 57.7 1159.3
1/04  73% 53 3156  22.1 59.5 1313.6
2/04  74% 73 3969 16.6 54.4 900.3
3/04 75% 70 3466  20.6 49.5 1018.0
KTH workload
avg. avg. per user
Proc. job size
Month deman: #user #jobs (node-hours)#jobs deman
10/9¢ 69% 68 240¢ 21.¢ 34.t 755.4¢
11/96 69% 66 1990 25.2 33.5 761.07
12/96 65% 69 2299 21.3 35.0 709.38
1/97 76% 65 2939 19.3 33.0 870.7
2/97 76% 75 2916 17.7 38.0 688.01
3/97 74% 69 2081 26.8 35.0 807.49
4/97 70% 83 2860 17.7 42.0 610.53
5/97 68% 80 4080 125 40.5 637.98
6/97 72% 58 2697 195 29.5 905.29
7197 62% 59 2182 21.4 30.C 790.9:
SDSC workloa
avg. avg. per user
Proc. job size
Month demand#users #jobs (node-hours)#jobs Demand
6/00 75% 120 7043 89.5 60.5 5251.6
7/00 72% 117 5607 110.9 59.0 5313.8
8/00 77% 141 5433 122.9 71.0 4736.1
9/00 60% 118 5172 97.8 59.5 4285.2
10/00 68% 119 4234 139.4 60.0 4959.4
11/0C 70% 11t 413: 141.% 58.C 5085.1
12/00 62% 107 3187 167.8 54.0 4998.9
1/01 62% 113 5963 90.5 57.0 4775.8
2/01 72% 128 6912 81.0 64.5 4372.2
3/01 70% 143 6206 97.5 72.0 4229.8
4/01 76% 132 7167 88.1 66.5 4783.4
5/01 83% 151 8428 81.8 76.0 4563.4

B. Policies

The Tradeoff-fs(Tx:avgX) will be evaluated agaiasbasic
priority backfill policy namely RelShare(1d) as posed in
[20]. RelShare(1d) policy considers jobs for schiadu
according to the fair share measure of the job’si@wThe
backfill technique [21] is added to allow some ofipriority
order scheduling results. That is, some low prygobs can be
scheduled to execute on available nodes if its wi@ts do

Urbana-Champaign during June 2003 to March 2004 THot affect the executions or scheduled executidnkigher

second job trace is a ten-monthly KTH workload [T®je last
job trace is a twelve-monthly SDSC workload [19hble 1
shows the workload characteristic in each montleaxth job
trace. The information presented includes total alwm(Proc.
demand), number of users (#users), number of jéfubg),
average job size (i.e., NT: nodes-hour, N: conputal

priority jobs. The fair share priority is the ratd the entitled
share to the actual cumulated usage dynamicallypoted
over a one-day window. One-day window is a typifzf
share window value on several
[8,9,12,13]. Goal-oriented parallel computer jothextuling
policies (Tradeoff-fs(Tw:avgX)) is described in 8en IIl.

production schedulers
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That is, Tradeoff-fs(Tw:avgX) is covered a fair sha
objective by using the fair share priority as thmarizhing
heuristic when organized the search tree. In amdtv the fair
share objective, the goal-oriented policies considietwo
objectives—preventing starvation and minimizing rage
measures.

C. Performance Measures

Both overall performances and per-user performamces
considered in this study. The focused performandbe per-
user fair share measure namely deviation or desgtiort [20]
which calculates the differences between the edtghare and
the actual cumulated usage. Thus, the positive vi#ue
means the over-share and the negative dev valuesrtea
under-share. The widely used scheduling performasceh
as the wait time and slowdown time will also besgrged in
some arguments. More overall scheduling performarared
overall fair share performances were presentedraviqus
works [1].

V. RESULTS ANDDISCUSSION

However, the goal-oriented policy can reduce thdemn
share of this user. There are four months thagta-oriented
policy produces larger dev values than that produme the
RelShare(1d) policy. These months are 11/96, 0208797
and 07/97. However, overall absolute dev perforreamicall
policies of each month in Table 5 shows that thal-goiented
policy is fair because it reduces the total absotigviation of
all users.

TABLE Il
PER-USERDEV PERFORMANCEOF THE HIGHEST DEMAND USEROF EACH
MONTH OF IA-64 WORKLOAD

Table Il shows the dev performance provided by each

policy under both actual runtime information (T) dan
approximate runtime information (R) of the highéstmand
user of each month of the 1A-64 workload. Tablen8ves the
same information of the KTH workload while Tablesdows
that of the SDSC workload. Table 5-7 show the dielev
performances of the two policies on 1A-64, KTH a8BSC
workloads, respectively. Table 8-10 show the ovexatrage
wait time performance of the two policies on IA-64TH and
SDSC workloads, respectively. Table 11-12 showawerall
scheduling performances of the two policies on BaR&-64
workload and 06/00 SDSC workload, respectively.

According to the results shown in Table 2, theseraisire
mostly over-share under most cases. The very sitege
points are the performances of the goal-orientelicypmn
06/03, 09/03, 10/03, 01/04, 02/04 and 03/04 morithst is,
the goal-oriented policy provides higher per-useev d
performances than that produced by the RelShar&ypol
However, the overall absolute dev data shown inleldb
shows that the goal-oriented policy provides lovtetal
absolute dev performances in all months except36after
inaccurate runtime information. According to théneduling
performance of all policies on 06/03 month, thelgognted
policy achieves good scheduling performances. This,
goal-oriented policy trades dev performances fdredaling
performances in this case. As a result, some jobsegeiving
exceed resources because doing so will result ipetser
overall scheduling performance which is parts ef thjective
considered.

For the results of KTH workload, the high demandrasio
not always over-share under the goal-oriented polidser
no.3 on 10/96 month has an average job size a?2dgde-
hours and all 38 jobs of this user require 80 cawmnal
nodes which is the largest of this month. As altethis user
suffered under the basic priority backfill policyi.e(,
RelShare(1d)).

User RelShare(1d) Tradeoff-fs(Tx:avgX)
Month  No. T R T R
06/03 49 1131 2951 5309 6605
07/03 3 6227 5920 2778 5447
08/0: 3 4041 379t 374z 346¢
09/03 3 1757 353 4762 3563
10/03 118 1101 543 1150 1198
11/03 3 2251 4390 1355 1924
12/03 103 3249 3349 967 1287
01/04 3 3459 -70 5007 1109
02/04 171 85 3427 -1150 -2441
03/04 42 1764 -187 2247 3185
TABLE llI

PER-USERDEV PERFORMANCEOF THE HIGHEST DEMAND USEROF EACH
MONTH OF KTH WORKLOAD

User RelShare(1d) Tradeoff-fs(Tx:avgX)
Month  No. T R T R
10/96 3 -7730 -6899 -156 -93
11/96 6 -203 -554 -1607 -1281
12/96 6 145 -669 -11 394
01/97 15 1132 1614 230 444
02/97 84 487¢ 399¢ 4311 485¢
03/97 84 4154 4125 354 329
04/97 14 -1062 -383 -411 -284
05/97 67 -274 -450 -515 -677
06/97 29 -1451 -1411 221 220
07/97 67 -8 -78 155 118
TABLE IV
PER-USERDEV PERFORMANCEOF THE HIGHEST DEMAND USEROF EACH
MONTHOF SDSCWORKLOAD
User RelShare(1d) Tradeoff-fs(Tx:avgX)
Month  No. T R T R
06/00 246 4737 -800 14515 -646
07/00 151 12241 7924 7989 3151
08/00 151 10309 10133 4510 7477
09/00 273 13851 -7017 15642 11092
10/00 95 -889 -7625 9937 10457
11/0C 95 -164€ 136¢ 24347 2758(
12/00 95 -3748 1008 2666 8332
01/01 99 12975 12967 2630 -8372
02/01 174 -2040 20655 5554 16173
03/01 174 -11530 12333 3430 7035
04/01 101 -1227 -571 11828 11849
05/01 101 545 4983 -264 -1090

Another interesting point is user no.6 in 11/96 thowhich
suffers under the goal-oriented policy while thi®udoes not
suffer as much under RelShare policy. This user Has
medium size job (i.e., average job size is 114 runles).
However, these jobs are a mixture of 2 to 64 nosiéls an
average runtime of 5.8 hours.
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Thus, this user is an example of the goal-oriergelicy
weakness presented in the previous work [1]. Thaaiuser
with a mixture of jobs may suffer because his/hmals jobs
can be backfilled resulting in a lower fair sharmpty. Thus,
the larger jobs will be affected by this changeause the jobs
will be considered for scheduling after a lot obgo(from
other higher priority users).

Similar to the results of 1A-64 workload, the higemand

users of each month of the SDSC workload are mostly

benefited under the goal-oriented policy, accordmthe data
presented in Table 4. The overall absolute devoperdnces
in Table 7 also shows that the goal-oriented pofioyduces
lower total
RelShare(1d) on most months, except 06/00. Accgrthirthe

scheduling performances of each policy on 06/00 GDS

workload shown in Table 9, the goal-oriented potiades the
dev performances for the scheduling performances.

TABLE V
OVERALL ABSOLUTEDEV PERFORMANCEON |A-64 WORKLOAD

RelShare(1d) Tradeoff-fs(Tx:avgX)
Month T R T R
06/03 20813 28561 19832 29986
07/03 72789 85083 61553 72520
08/03 103526 123068 90127 106287
09/03 131350 152926 116515 136603
10/03 148315 174058 132585 153869
11/03 170053 201312 146209 170737
12/0z 19509: 22343: 16135¢ 19089:
01/04 225696 250236 182672 210067
02/04 259492 294952 197859 231871
03/04 284678 331111 219018 261493
TABLE VI

OVERALL ABSOLUTEDEV PERFORMANCEON KTH WORKLOAD

RelShare(1d) Tradeoff-fs(Tx:avgX)
Month T R T R
10/9€¢ 2372 2387¢ 1122¢ 1245¢
11/96 45622 47507 26445 27733
12/96 63754 65695 39754 42806
01/97 82059 86580 52261 56912
02/97 102119 108646 68986 76068
03/97 125979 136087 85437 92557
04/97 139846 150409 94788 102476
05/97 148431 158745 103636 109483
06/97 155120 166703 109049 115794
07/97 160202 172427 112956 119368

TABLE VII
OVERALL DEV PERFORMANCEON SDSC

RelShare(1d) Tradeoff-fs(Tx:avgX)
Month T R T R
06/00 127867 122842 136207 139704
07/00 290361 289481 266049 289369
08/00 441725 479307 367728 343707
09/00 554176 581898 472440 478405
10/00 687519 717063 595267 606284
11/0C 72982: 77348: 67506! 71344(
12/0C 83483 88355t 75796¢ 81943:
01/01 984392 1044091 845105 922062
02/01 1116066 1244936 959343 1061431
03/01 1229301 1416714 1051635 1174007
04/01 1436186 1648090 1198499 1315528
05/01 1674706 2026606 1273787 1466926

dev performances than that produced by

TABLE VIl
SCHEDULING PERFORMANCESON 06/03IA-64 WORKLOAD

RelShare(1d) Tradeoff-fs(Tx:avgX)
Measure T R T R
Avg. Wait 4.7h 7.6h 4.1h 4.9h
Max. Wait 104.5h 163.4h 48.8h 61.5h
Avg. Slowdown 29.6 42.8 27.6 36.3
TABLE IX

SCHEDULEING PERFORMANCESON 06/00SDSCWORKLOAD

RelShare(1d) Tradeoff-fs(Tx:avgX)
Measure T R T R
Avg. Wait 0.8h 0.9h 0.7h 0.8h
Max. Wait 94.2h 102.8h 38.9h 103.3h
Avg. Slowdown 7.9 13.1 6.9 12.9

In conclusion, the results in this section showt tine per-
user deviation of most high demand users is maostigr-
share. Since these users are either have largejdizms/e a lot
of jobs, their jobs will eventually be scheduledbarckfilled.
However, the goal-oriented parallel computer jobestuling
policies can provide the lowest total absolute diéon values
on most months. For a few months with slightly ligh
absolute deviation values observed, the goal-akmolicy
trades these fair share performances for
performances.

Further analysis of the users with a lot of jobd #re users
with a set of slightly large jobs found the followgs. The
number of jobs does not strongly affect the goaried
policy performances. The users with a set of digkdrge
jobs, however, can be suffered under the goal-tmtkpolicy
because their jobs may be difficult to be bacldillen
addition, if a few of their smaller jobs are schieduthen
user’s fair share priority will be reduced. Thuse targer jobs
will then be low priority jobs. As a result, thgsés may need
to wait longer which may lead to an under-sharéoperance.
If the jobs are not too large to be backfilled, lever, the
job’s owner may be benefited. This is becausedhs jnay be
backfilled for performances under the goal-orienpadicy.
The study also shows that the accuracy of the ymerdded
runtime information and the number of jobs the us&s, do
not produce any significant impact on
performance of the goal-oriented policy.

VI. CONCLUSIONS

This study presents and analyzes the per-userrpafces
of Tradeoff-fs(Tx:avgX) i.e., the extending goalemted
parallel job scheduling policy to cover fair shatgective by
applying the fair share priority as a branching rigtic.
Tradeoff-fs(Tx:avgX) and RelShare(1d) are evaluatisihg
an event-driven simulator. Three real job traces wsed as
input to the simulator. The per-user performandethe high
demand users on each month of each workload adeedtin
details. Furthermore, the most-submitted-job usand the
users with a large error in their runtime inforroatiare also
analyzed.

The experimental results show that these usersisrally
benefited (over-share) under most situations becthesr jobs
are either large or they have a lot of jobs. Inltrge job case,
one job executed may result in over-share durig pleriod.

scheduling

the per-user
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In the other case, the jobs may be backfilled ffgrmances.
Thus, only the users with a mixture of jobs mayerubecause
if the smaller jobs are executing the priority bétremaining
jobs from the same user will be lower. Therefote tisers
with mixture of jobs should separate their jobsraveeriod of
time under the goal-oriented policy for a betterfgenance
according to their share. Further analysis doesshowv any
significant difference or impact of users with & & jobs or
users with a large runtime approximation error.

The results presented in this work are further icorgd that
the Tradeoff-fs(Tw:avgX) policy does achieve goad thare
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performances and scheduling performances. Evengkthou

some high demand users without a mixture of large small
jobs may be benefited, it does not result in a tvokerall
scheduling or fair share performances.
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