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Abstract—In the past decade, because of wide applications of 

hybrid systems, many researchers have considered modeling and 

control of these systems. Since switching systems constitute an 

important class of hybrid systems, in this paper a method for optimal 

control of linear switching systems is described. The method is also 

applied on the two-tank system which is a much appropriate system 

to analyze different modeling and control techniques of hybrid 

systems. Simulation results show that, in this method, the goals of 

control and also problem constraints can be satisfied by an 

appropriate selection of cost function. 

Keywords—Hybrid systems, optimal control, switched systems, 

two-tank system

I. INTRODUCTION

n the context of modeling and control, combinational 

systems are systems which are constituted from a 

combination of continuous and discrete elements and their 

behavior is a result of mutual effects of these elements on each 

other. In past, dynamics of such systems was considered 

separately. 

When continuous and discrete elements are working 

together in a process and there is a considerable relation 

between these elements, it is needed to consider dynamical 

elements and their mutual relations altogether to get to a 

thorough understanding of the system's behavior and achieve 

high efficiency. This is the only way to exactly analyze and 

optimize a process. That is why in the last years many 

researchers have concentrated their efforts on modeling and 

control of hybrid systems. However, general methods for 

analysis and design of hybrid systems have not been 

developed yet. 

It is noteworthy that switched systems are an important part 

of hybrid systems and consist of some subsystems and a 

switching law which specifies the active subsystem in each 

time instance. Many industrial systems such as chemical 

systems, transportation systems, etc. can be modeled as a 

switched system [1]. 
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For optimal control of switched systems it is necessary to 

obtain the optimal input and optimal switching instances 

simultaneously. In this paper, the two-tank system is 

considered as a switched system and using quadratic cost 

function, the optimal switching instance and optimal input are 

obtained such that the cost function is minimized  

II. OPTIMAL CONTROL OF SWITCHED SYSTEMS

In this paper, it is assumed that switched system consists of 

the subsystems 
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In order to control switched systems it is necessary to 

obtain switching sequences in addition to the input [2]-[7]. In 

fact, the switching sequence represents the sequence of active 

subsystems and is defined as 
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where ),...,1,0( KkIik  , K0  and 

fK tttt ...10 . The pair ),( kk it shows that we 

switch in kt  from subsystem 1ki  to subsystem ki . As 

mentioned before, for optimal control of the switched system 

one must obtain optimal input and optimal switching time 

simultaneously. The General Switched Linear Quadratic 

systems constitute an important class of switched systems 

whose optimal control method is described as follows: 

Problem 1: 

Suppose the following switched system  

ftttuBxAx

tttuBxAx

122

1011
                                (3) 

The main goal is determination of switching time 1t and 

input )(tu such that the following cost function is minimized: 
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Where , , , , , , , ,f f fQ M W Q V R M N W are matrices 

with appropriate dimensions and 0, 0, 0fR Q Q  [8]. 

In order to solve the above problem, it is divided to two 

stages. In the first stage, a sequence of switching instances is 

considered and the minimum cost function with respect to 
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input u is obtained. In the second stage, using the values 

obtained in the first stage, switching instances are modified 

such that the cost function approaches its minimum value [9]-

[11].The following numerical algorithm is used for 

implementing this optimization method: 

ALGORITHM 1: 

1. Set the iteration index 0j  and initialize switching 

instances ˆ
jt .

2. Calculate 1
ˆ( )jJ t  by solving the optimal control problem 

(according to stage 1). 

3. Calculate 1 ˆ( )
ˆ j

J
t

t
.

4. Change ˆ
jt  to 

1
ˆ ˆ ˆj

j j jt t dt using the value 

calculated in previous iteration (
j

should be chosen such 

that desired convergence is attained) 

5. Repeat steps 2, 3 and 4 until the norm of projection of 

1 ˆ( )
ˆ j

J
t

t
 is smaller than a given small value. 

According to the above algorithm, the values of  1
ˆ( )jJ t

and 1 ˆ( )
ˆ j

J
t

t
 are needed. To calculate these values and also 

convert Problem 1 to a conventional optimal control problem, 

method of parameterization of the switching instances is 

deployed as follows: 

A new state variable 1nx is defined: 
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11
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A new independent variable  is also defined as follows 
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It is clear that according to the above definition, 0 ,

1 and 2  correspond to 0tt , 1tt  and ftt ,

respectively[12]. Considering  as time variable and defining 

1nx  Problem 1 is converted to Problem 2: 

Problem 2: 

For system with dynamics  
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It is desired to calculate )(u and 1nx in the interval 

]2,0[  such that the following cost function is 

minimized: 
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Conventional methods can be used for solving this problem. 

Assume that the optimal value function is 
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in the interval )1,0[ and 
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in the interval ]2,1[  [1]. 

Using a method similar to solving LQR problem [13], the 

solution for HJB equation is as follows: 
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In the above equation, indices 1k and 2k correspond 

to the intervals )1,0[ and ]2,1[ , respectively. 

),( 1nxP , ),( 1nxS  and ),( 1nxT  which are denoted 

respectively by P, S and T satisfy the following Riccati 

equation: 
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in the interval )1,0[ and 
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in the ]2,1[ .

Along with the boundary equations fn QxP ),2( 1 ,

fn MxS ),2( 1  and fn WxT ),2( 1 , (17-22) can be 

solved (for a fixed 1nx ) backward in  and obtain the 

parameterized optimal cost at 0 .
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and from the above equation we have 
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for obtaining 

1

1

ndx
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using the above equation, values of 
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Differentiating equations (17-22) with respect to 1nx  the 

mentioned values are obtained as follows: 
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in the interval )1,0[  and 

))()()(

)()((

))()((

1
2

1
22

1

2
11

22
1

1

2
1

222

1

n

TTT

nn

T

n
nf

TTT

n

x

P
BRVPBVPBR

B
x

P

x

P
AA

x

P
xt

VPBRVPBPAPAQ

x

P

     (28) 

))()(

)()()((

))()((

1
2

1
2

2
1

2
1

2
1

1

2
1

22

1

n

T

TT

nn
nf

TT

n

x

P
BRSBN

VPBRB
x

S
A

x

S
xt

VPBRSBNSAM

x

S

(29) 

))()(
2

1

)()
2

1
)((

))()(
2

1
(

1

2

1

2

2

1

2

1

1

2

1

2

1

T

n

T

TTT

n

nf

TTT

n

x

S
BRSBN

NSBRB
x

S
xt

NSBRSBNW

x

T

      (30) 

in the interval ]2,1[ .

Solving the equations (17-19) (when k=1) and (25-27) for 

)1,0[ and the equations (20-22) (when k=2) and (28-30) 

for ]2,1[  together with the following boundary 
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conditions 
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and substituting in equation (24) and using algorithm 1, the 

desired optimal control problem can be solved [1]. 

Remark: By a little change, the method presented above can 

be generalized to the case in which the number of switching is 

more than one. 

III. MODELING AND OPTIMAL CONTROL OF                             

TWO-TANK SYSTEM

Two-tank system has been studied by many researchers as 

an appropriate system for investigating hybrid systems, since 

one can evaluate efficiency of different methods by increasing 

the number of tanks [14]-[16]. For example, modeling and 

optimization of the system based on hybrid automata and an 

innovative optimization approach are proposed in [14]. In this 

paper we apply the mentioned optimal method to a two-tank 

system by modeling and appropriately linearizing it. 

A two-tank system as shown in figure 1 is composed of two 

tanks connected to each other. The tanks are filled with fluids 

and the fluids are controlled by three control valves. At the 

beginning, tanks 1 and 2 are disconnected and at the switching 

instance (which should be determined by us) they will be 

connected and the fluid flows from tank 1 to tank 2. The goal 

is to take fluid level in the tanks at a predetermined value. 

Achieving this goal together with satisfying the existing 

constraints necessitate appropriate selection of the cost 

function. 

The rate of the level of fluid in each tank is related directly 

to the difference between inflow and outflow rates and 

inversely to tank cross section area. Thus, nonlinear dynamics 

of the systems can be expressed by following equations: 
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Fig. 1 Two-tank system 

where, 1x  and 2x  the are height of  fluid in each tank, iu

is the control signal for valve iV , iA  the cross section area of 

i’th tank and ik  is valve constant for i’th valve. It is assumed 

that control signals and state variables can take values in the 

intervals ],[ maxmin uu  and ],[ maxmin xx  respectively. The 

mentioned constraints and goal can be taken into account 

aptly in the cost function so that obtained solution meets the 

desired conditions. For example, if the goal is taking state 

variables 1x  and 2x  (fluid heights of the tanks 1 and 2) to 

values nx1  and nx2 , then )(1 ftx and )(2 ftx  can get the 

desired values by adding 

]))(())([( 2
22

2
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to the cost function and setting  a great value. 

Nonlinear dynamics of the system can be expressed 

explicitly in two distinct regions: 
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By linearizing the above equations around the equilibrium 

point ),( eqeq ux  (in both region) using 
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and defining new variables eqeq uuuxxx ** ,

and expressing the cost function as a function of  
*x  and 

*u ,

the mentioned problem is converted to a linear switching 

problem with quadratic cost function. The latter problem can 

be solved using the mentioned method such that the cost 

function is minimized and thereby main goal of control 

together with the problem’s constraints are satisfied. 

IV. SIMULATION RESULTS

The desired heights of fluid in the tanks are m50x n1 .

and m10x n2 .  respectively in simulations and therefore we 

add term ])1.0)(()5.0)([(140000 2
2

2
1 ff txtx  to 

the cost function. In order to achieve the goal of control and 

satisfying problem constraints, matrices in the cost function 

are chosen to be: 

4.19]1555[]1025[
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]26.15.3[101014

333222
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22
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f

ff

Simulation results are shown in figures 2, 3 and 4. 

According to the above matrices and by choosing 

0,10,5.0,1.0 012 ttxx fnn , the optimal 

switching instance, )(1 ftx  and )(2 ftx  would be 2.9176s, 

0.5019m and 0.1076m respectively. It can be seen that the two 

last values are very close desired values, i.e. 0.5 and 0.1. 

Figures 2 and 3 show that until instance t=2.9176s, height of 

the first tank increases to about 1.62 m while height of the 

second tank is zeros.  

Fig. 2 Height of fluid in the first and second tanks 

Fig. 3 State trajectory 

After the switching instance till t=6.2081s, height of the 

first tank decreases and fluid inside the second tank is raised 

and after that heights of both the tanks decrease. Control 

inputs are shown in figure 4. 

Fig. 4 Control inputs 

V. CONCLUSION

In this paper, we considered the optimal control of linear 

switching systems with quadratic cost function which are a 

class of hybrid systems. The explained method was applied on 

the two-tank system which is an appropriate system for 

modeling and control of hybrid systems. In this method, the 

problem was converted to a conventional optimal control 

problem using the parameterization of switching instances and 

the switching instance and optimal input were obtained by 

algorithm 1. Moreover, in this method, the goal of control and 

also existing constraints are satisfied by appropriate selection 

of the matrices in cost function. Simulation results 

demonstrate that the explained method is appropriate for 

optimal control of linear switching systems. 
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