Placebo Effect on Psychoemotional Status and Clinical Analyses of Armenian Crohn's Disease Patients

The Zung self-depression scale and Beck Anxiety Inventory were used both to study the depression and anxiety levels of Armenian Crohn’s disease patients, and to reveal the relation between emotional status and placebo effect of these patients. On the other hand, the blood cell analyses and gut bacteria investigations were used to assess the placebo effect on ESR, and haemoglobin-s and leukocyte-s levels as well as gut commensal E. coli quantities of these patients. Despite of registered high levels of depression and anxiety, the high placebo effect on psychoemotional status for investigated patients during the investigations was described. On the other hand, no positive effect of placebo on measurements of ESP and hemoglobin-s levels of Crohn’s disease patients was revealed. The importance of use of psychotherapies for optimal outcomes during treatments of Crohn’s disease is discussed.

Chaotic Properties of Hemodynamic Responsein Functional Near Infrared Spectroscopic Measurement of Brain Activity

Functional near infrared spectroscopy (fNIRS) is a practical non-invasive optical technique to detect characteristic of hemoglobin density dynamics response during functional activation of the cerebral cortex. In this paper, fNIRS measurements were made in the area of motor cortex from C4 position according to international 10-20 system. Three subjects, aged 23 - 30 years, were participated in the experiment. The aim of this paper was to evaluate the effects of different motor activation tasks of the hemoglobin density dynamics of fNIRS signal. The chaotic concept based on deterministic dynamics is an important feature in biological signal analysis. This paper employs the chaotic properties which is a novel method of nonlinear analysis, to analyze and to quantify the chaotic property in the time series of the hemoglobin dynamics of the various motor imagery tasks of fNIRS signal. Usually, hemoglobin density in the human brain cortex is found to change slowly in time. An inevitable noise caused by various factors is to be included in a signal. So, principle component analysis method (PCA) is utilized to remove high frequency component. The phase pace is reconstructed and evaluated the Lyapunov spectrum, and Lyapunov dimensions. From the experimental results, it can be conclude that the signals measured by fNIRS are chaotic.

Diagnosing Dangerous Arrhythmia of Patients by Automatic Detecting of QRS Complexes in ECG

In this paper, an automatic detecting algorithm for QRS complex detecting was applied for analyzing ECG recordings and five criteria for dangerous arrhythmia diagnosing are applied for a protocol type of automatic arrhythmia diagnosing system. The automatic detecting algorithm applied in this paper detected the distribution of QRS complexes in ECG recordings and related information, such as heart rate and RR interval. In this investigation, twenty sampled ECG recordings of patients with different pathologic conditions were collected for off-line analysis. A combinative application of four digital filters for bettering ECG signals and promoting detecting rate for QRS complex was proposed as pre-processing. Both of hardware filters and digital filters were applied to eliminate different types of noises mixed with ECG recordings. Then, an automatic detecting algorithm of QRS complex was applied for verifying the distribution of QRS complex. Finally, the quantitative clinic criteria for diagnosing arrhythmia were programmed in a practical application for automatic arrhythmia diagnosing as a post-processor. The results of diagnoses by automatic dangerous arrhythmia diagnosing were compared with the results of off-line diagnoses by experienced clinic physicians. The results of comparison showed the application of automatic dangerous arrhythmia diagnosis performed a matching rate of 95% compared with an experienced physician-s diagnoses.

Functional Near Infrared Spectroscope for Cognition Brain Tasks by Wavelets Analysis and Neural Networks

Brain Computer Interface (BCI) has been recently increased in research. Functional Near Infrared Spectroscope (fNIRs) is one the latest technologies which utilize light in the near-infrared range to determine brain activities. Because near infrared technology allows design of safe, portable, wearable, non-invasive and wireless qualities monitoring systems, fNIRs monitoring of brain hemodynamics can be value in helping to understand brain tasks. In this paper, we present results of fNIRs signal analysis indicating that there exist distinct patterns of hemodynamic responses which recognize brain tasks toward developing a BCI. We applied two different mathematics tools separately, Wavelets analysis for preprocessing as signal filters and feature extractions and Neural networks for cognition brain tasks as a classification module. We also discuss and compare with other methods while our proposals perform better with an average accuracy of 99.9% for classification.

Quantification of Heart Rate Variability: A Measure based on Unique Heart Rates

It is established that the instantaneous heart rate (HR) of healthy humans keeps on changing. Analysis of heart rate variability (HRV) has become a popular non invasive tool for assessing the activities of autonomic nervous system. Depressed HRV has been found in several disorders, like diabetes mellitus (DM) and coronary artery disease, characterised by autonomic nervous dysfunction. A new technique, which searches for pattern repeatability in a time series, is proposed specifically for the analysis of heart rate data. These set of indices, which are termed as pattern repeatability measure and pattern repeatability ratio are compared with approximate entropy and sample entropy. In our analysis, based on the method developed, it is observed that heart rate variability is significantly different for DM patients, particularly for patients with diabetic foot ulcer.

Computer Aided Detection on Mammography

A typical definition of the Computer Aided Diagnosis (CAD), found in literature, can be: A diagnosis made by a radiologist using the output of a computerized scheme for automated image analysis as a diagnostic aid. Often it is possible to find the expression Computer Aided Detection (CAD or CADe): this definition emphasizes the intent of CAD to support rather than substitute the human observer in the analysis of radiographic images. In this article we will illustrate the application of CAD systems and the aim of these definitions. Commercially available CAD systems use computerized algorithms for identifying suspicious regions of interest. In this paper are described the general CAD systems as an expert system constituted of the following components: segmentation / detection, feature extraction, and classification / decision making. As example, in this work is shown the realization of a Computer- Aided Detection system that is able to assist the radiologist in identifying types of mammary tumor lesions. Furthermore this prototype of station uses a GRID configuration to work on a large distributed database of digitized mammographic images.

Modelling the Role of Prophylaxis in Malaria Prevention

Malaria is by far the world-s most persistent tropical parasitic disease and is endemic to tropical areas where the climatic and weather conditions allow continuous breeding of the mosquitoes that spread malaria. A mathematical model for the transmission of malaria with prophylaxis prevention is analyzed. The stability analysis of the equilibria is presented with the aim of finding threshold conditions under which malaria clears or persists in the human population. Our results suggest that eradication of mosquitoes and prophylaxis prevention can significantly reduce the malaria burden on the human population.

Time and Frequency Domain Analysis of Heart Rate Variability and their Correlations in Diabetes Mellitus

Diabetes mellitus (DM) is frequently characterized by autonomic nervous dysfunction. Analysis of heart rate variability (HRV) has become a popular noninvasive tool for assessing the activities of autonomic nervous system (ANS). In this paper, changes in ANS activity are quantified by means of frequency and time domain analysis of R-R interval variability. Electrocardiograms (ECG) of 16 patients suffering from DM and of 16 healthy volunteers were recorded. Frequency domain analysis of extracted normal to normal interval (NN interval) data indicates significant difference in very low frequency (VLF) power, low frequency (LF) power and high frequency (HF) power, between the DM patients and control group. Time domain measures, standard deviation of NN interval (SDNN), root mean square of successive NN interval differences (RMSSD), successive NN intervals differing more than 50 ms (NN50 Count), percentage value of NN50 count (pNN50), HRV triangular index and triangular interpolation of NN intervals (TINN) also show significant difference between the DM patients and control group.

Automatic 3D Reconstruction of Coronary Artery Centerlines from Monoplane X-ray Angiogram Images

We present a new method for the fully automatic 3D reconstruction of the coronary artery centerlines, using two X-ray angiogram projection images from a single rotating monoplane acquisition system. During the first stage, the input images are smoothed using curve evolution techniques. Next, a simple yet efficient multiscale method, based on the information of the Hessian matrix, for the enhancement of the vascular structure is introduced. Hysteresis thresholding using different image quantiles, is used to threshold the arteries. This stage is followed by a thinning procedure to extract the centerlines. The resulting skeleton image is then pruned using morphological and pattern recognition techniques to remove non-vessel like structures. Finally, edge-based stereo correspondence is solved using a parallel evolutionary optimization method based on f symbiosis. The detected 2D centerlines combined with disparity map information allow the reconstruction of the 3D vessel centerlines. The proposed method has been evaluated on patient data sets for evaluation purposes.

Modeling HIV/AIDS Prevention by Defense

The functional response of an infective is the relationship between an infected individual-s infection rate and the abundance of the number of susceptibles that one can potentially be infected. In this paper, we consider defensive attitudes for HIV prevention (primary prevention) while at the same time emphasizing on offensive attitudes that reduce infection for those infected (secondary prevention). We look at how defenses can protect an uninfected individual in the case where high risk groups such as commercial sex workers and those who deliberately go out to look for partners. We propose an infection cycle that begins with a search, then an encounter, a proposal and contact. The infection cycle illustrates the various steps an infected individual goes through to successfully infect a susceptible. For heterogeneous transmission of HIV, there will be no infection unless there is contact. The ability to avoid an encounter, detection, proposal and contact constitute defense.

On The Analysis of a Compound Neural Network for Detecting Atrio Ventricular Heart Block (AVB) in an ECG Signal

Heart failure is the most common reason of death nowadays, but if the medical help is given directly, the patient-s life may be saved in many cases. Numerous heart diseases can be detected by means of analyzing electrocardiograms (ECG). Artificial Neural Networks (ANN) are computer-based expert systems that have proved to be useful in pattern recognition tasks. ANN can be used in different phases of the decision-making process, from classification to diagnostic procedures. This work concentrates on a review followed by a novel method. The purpose of the review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in ECG signals. The developed method is based on a compound neural network (CNN), to classify ECGs as normal or carrying an AtrioVentricular heart Block (AVB). This method uses three different feed forward multilayer neural networks. A single output unit encodes the probability of AVB occurrences. A value between 0 and 0.1 is the desired output for a normal ECG; a value between 0.1 and 1 would infer an occurrence of an AVB. The results show that this compound network has a good performance in detecting AVBs, with a sensitivity of 90.7% and a specificity of 86.05%. The accuracy value is 87.9%.