Pattern Recognition of Biological Signals

This paper presents an evolutionary method for designing electronic circuits and numerical methods associated with monitoring systems. The instruments described here have been used in studies of weather and climate changes due to global warming, and also in medical patient supervision. Genetic Programming systems have been used both for designing circuits and sensors, and also for determining sensor parameters. The authors advance the thesis that the software side of such a system should be written in computer languages with a strong mathematical and logic background in order to prevent software obsolescence, and achieve program correctness.

Coerced Delay and Multi Additive Constraints QoS Routing Schemes

IP networks are evolving from data communication infrastructure into many real-time applications such as video conferencing, IP telephony and require stringent Quality of Service (QoS) requirements. A rudimentary issue in QoS routing is to find a path between a source-destination pair that satisfies two or more endto- end constraints and termed to be NP hard or complete. In this context, we present an algorithm Multi Constraint Path Problem Version 3 (MCPv3), where all constraints are approximated and return a feasible path in much quicker time. We present another algorithm namely Delay Coerced Multi Constrained Routing (DCMCR) where coerce one constraint and approximate the remaining constraints. Our algorithm returns a feasible path, if exists, in polynomial time between a source-destination pair whose first weight satisfied by the first constraint and every other weight is bounded by remaining constraints by a predefined approximation factor (a). We present our experimental results with different topologies and network conditions.

Secure Data Aggregation Using Clusters in Sensor Networks

Wireless sensor network can be applied to both abominable and military environments. A primary goal in the design of wireless sensor networks is lifetime maximization, constrained by the energy capacity of batteries. One well-known method to reduce energy consumption in such networks is data aggregation. Providing efcient data aggregation while preserving data privacy is a challenging problem in wireless sensor networks research. In this paper, we present privacy-preserving data aggregation scheme for additive aggregation functions. The Cluster-based Private Data Aggregation (CPDA)leverages clustering protocol and algebraic properties of polynomials. It has the advantage of incurring less communication overhead. The goal of our work is to bridge the gap between collaborative data collection by wireless sensor networks and data privacy. We present simulation results of our schemes and compare their performance to a typical data aggregation scheme TAG, where no data privacy protection is provided. Results show the efficacy and efficiency of our schemes.

An Empirical Analysis of Arabic WebPages Classification using Fuzzy Operators

In this study, a fuzzy similarity approach for Arabic web pages classification is presented. The approach uses a fuzzy term-category relation by manipulating membership degree for the training data and the degree value for a test web page. Six measures are used and compared in this study. These measures include: Einstein, Algebraic, Hamacher, MinMax, Special case fuzzy and Bounded Difference approaches. These measures are applied and compared using 50 different Arabic web pages. Einstein measure was gave best performance among the other measures. An analysis of these measures and concluding remarks are drawn in this study.

Optimal Document Archiving and Fast Information Retrieval

In this paper, an intelligent algorithm for optimal document archiving is presented. It is kown that electronic archives are very important for information system management. Minimizing the size of the stored data in electronic archive is a main issue to reduce the physical storage area. Here, the effect of different types of Arabic fonts on electronic archives size is discussed. Simulation results show that PDF is the best file format for storage of the Arabic documents in electronic archive. Furthermore, fast information detection in a given PDF file is introduced. Such approach uses fast neural networks (FNNs) implemented in the frequency domain. The operation of these networks relies on performing cross correlation in the frequency domain rather than spatial one. It is proved mathematically and practically that the number of computation steps required for the presented FNNs is less than that needed by conventional neural networks (CNNs). Simulation results using MATLAB confirm the theoretical computations.

A Technique for Reachability Graph Generation for the Petri Net Models of Parallel Processes

Reachability graph (RG) generation suffers from the problem of exponential space and time complexity. To alleviate the more critical problem of time complexity, this paper presents the new approach for RG generation for the Petri net (PN) models of parallel processes. Independent RGs for each parallel process in the PN structure are generated in parallel and cross-product of these RGs turns into the exhaustive state space from which the RG of given parallel system is determined. The complexity analysis of the presented algorithm illuminates significant decrease in the time complexity cost of RG generation. The proposed technique is applicable to parallel programs having multiple threads with the synchronization problem.

A Novel Steganographic Method for Gray-Level Images

In this work we propose a novel Steganographic method for hiding information within the spatial domain of the gray scale image. The proposed approach works by dividing the cover into blocks of equal sizes and then embeds the message in the edge of the block depending on the number of ones in left four bits of the pixel. The proposed approach is tested on a database consists of 100 different images. Experimental results, compared with other methods, showed that the proposed approach hide more large information and gave a good visual quality stego-image that can be seen by human eyes.

Computation of Probability Coefficients using Binary Decision Diagram and their Application in Test Vector Generation

This paper deals with efficient computation of probability coefficients which offers computational simplicity as compared to spectral coefficients. It eliminates the need of inner product evaluations in determination of signature of a combinational circuit realizing given Boolean function. The method for computation of probability coefficients using transform matrix, fast transform method and using BDD is given. Theoretical relations for achievable computational advantage in terms of required additions in computing all 2n probability coefficients of n variable function have been developed. It is shown that for n ≥ 5, only 50% additions are needed to compute all probability coefficients as compared to spectral coefficients. The fault detection techniques based on spectral signature can be used with probability signature also to offer computational advantage.

An Efficient Algorithm for Delay Delay-variation Bounded Least Cost Multicast Routing

Many multimedia communication applications require a source to transmit messages to multiple destinations subject to quality of service (QoS) delay constraint. To support delay constrained multicast communications, computer networks need to guarantee an upper bound end-to-end delay from the source node to each of the destination nodes. This is known as multicast delay problem. On the other hand, if the same message fails to arrive at each destination node at the same time, there may arise inconsistency and unfairness problem among users. This is related to multicast delayvariation problem. The problem to find a minimum cost multicast tree with delay and delay-variation constraints has been proven to be NP-Complete. In this paper, we propose an efficient heuristic algorithm, namely, Economic Delay and Delay-Variation Bounded Multicast (EDVBM) algorithm, based on a novel heuristic function, to construct an economic delay and delay-variation bounded multicast tree. A noteworthy feature of this algorithm is that it has very high probability of finding the optimal solution in polynomial time with low computational complexity.

Optimizing Dialogue Strategy Learning Using Learning Automata

Modeling the behavior of the dialogue management in the design of a spoken dialogue system using statistical methodologies is currently a growing research area. This paper presents a work on developing an adaptive learning approach to optimize dialogue strategy. At the core of our system is a method formalizing dialogue management as a sequential decision making under uncertainty whose underlying probabilistic structure has a Markov Chain. Researchers have mostly focused on model-free algorithms for automating the design of dialogue management using machine learning techniques such as reinforcement learning. But in model-free algorithms there exist a dilemma in engaging the type of exploration versus exploitation. Hence we present a model-based online policy learning algorithm using interconnected learning automata for optimizing dialogue strategy. The proposed algorithm is capable of deriving an optimal policy that prescribes what action should be taken in various states of conversation so as to maximize the expected total reward to attain the goal and incorporates good exploration and exploitation in its updates to improve the naturalness of humancomputer interaction. We test the proposed approach using the most sophisticated evaluation framework PARADISE for accessing to the railway information system.

PI Control for Second Order Delay System with Tuning Parameter Optimization

In this paper, we consider the control of time delay system by Proportional-Integral (PI) controller. By Using the Hermite- Biehler theorem, which is applicable to quasi-polynomials, we seek a stability region of the controller for first order delay systems. The essence of this work resides in the extension of this approach to second order delay system, in the determination of its stability region and the computation of the PI optimum parameters. We have used the genetic algorithms to lead the complexity of the optimization problem.

GeoSEMA: A Modelling Platform, Emerging “GeoSpatial-based Evolutionary and Mobile Agents“

Spatial and mobile computing evolves. This paper describes a smart modeling platform called “GeoSEMA". This approach tends to model multidimensional GeoSpatial Evolutionary and Mobile Agents. Instead of 3D and location-based issues, there are some other dimensions that may characterize spatial agents, e.g. discrete-continuous time, agent behaviors. GeoSEMA is seen as a devoted design pattern motivating temporal geographic-based applications; it is a firm foundation for multipurpose and multidimensional special-based applications. It deals with multipurpose smart objects (buildings, shapes, missiles, etc.) by stimulating geospatial agents. Formally, GeoSEMA refers to geospatial, spatio-evolutive and mobile space constituents where a conceptual geospatial space model is given in this paper. In addition to modeling and categorizing geospatial agents, the model incorporates the concept of inter-agents event-based protocols. Finally, a rapid software-architecture prototyping GeoSEMA platform is also given. It will be implemented/ validated in the next phase of our work.

Categorical Data Modeling: Logistic Regression Software

A Matlab based software for logistic regression is developed to enhance the process of teaching quantitative topics and assist researchers with analyzing wide area of applications where categorical data is involved. The software offers an option of performing stepwise logistic regression to select the most significant predictors. The software includes a feature to detect influential observations in data, and investigates the effect of dropping or misclassifying an observation on a predictor variable. The input data may consist either as a set of individual responses (yes/no) with the predictor variables or as grouped records summarizing various categories for each unique set of predictor variables' values. Graphical displays are used to output various statistical results and to assess the goodness of fit of the logistic regression model. The software recognizes possible convergence constraints when present in data, and the user is notified accordingly.

Unsupervised Feature Selection Using Feature Density Functions

Since dealing with high dimensional data is computationally complex and sometimes even intractable, recently several feature reductions methods have been developed to reduce the dimensionality of the data in order to simplify the calculation analysis in various applications such as text categorization, signal processing, image retrieval, gene expressions and etc. Among feature reduction techniques, feature selection is one the most popular methods due to the preservation of the original features. In this paper, we propose a new unsupervised feature selection method which will remove redundant features from the original feature space by the use of probability density functions of various features. To show the effectiveness of the proposed method, popular feature selection methods have been implemented and compared. Experimental results on the several datasets derived from UCI repository database, illustrate the effectiveness of our proposed methods in comparison with the other compared methods in terms of both classification accuracy and the number of selected features.

Visualization of Searching and Sorting Algorithms

Sequences of execution of algorithms in an interactive manner using multimedia tools are employed in this paper. It helps to realize the concept of fundamentals of algorithms such as searching and sorting method in a simple manner. Visualization gains more attention than theoretical study and it is an easy way of learning process. We propose methods for finding runtime sequence of each algorithm in an interactive way and aims to overcome the drawbacks of the existing character systems. System illustrates each and every step clearly using text and animation. Comparisons of its time complexity have been carried out and results show that our approach provides better perceptive of algorithms.

Object-Oriented Cognitive-Spatial Complexity Measures

Software maintenance and mainly software comprehension pose the largest costs in the software lifecycle. In order to assess the cost of software comprehension, various complexity measures have been proposed in the literature. This paper proposes new cognitive-spatial complexity measures, which combine the impact of spatial as well as architectural aspect of the software to compute the software complexity. The spatial aspect of the software complexity is taken into account using the lexical distances (in number of lines of code) between different program elements and the architectural aspect of the software complexity is taken into consideration using the cognitive weights of control structures present in control flow of the program. The proposed measures are evaluated using standard axiomatic frameworks and then, the proposed measures are compared with the corresponding existing cognitive complexity measures as well as the spatial complexity measures for object-oriented software. This study establishes that the proposed measures are better indicators of the cognitive effort required for software comprehension than the other existing complexity measures for object-oriented software.

New Methods for E-Commerce Databases Designing in Semantic Web Systems (Modern Systems)

The purpose of this paper is to study Database Models to use them efficiently in E-commerce websites. In this paper we are going to find a method which can save and retrieve information in Ecommerce websites. Thus, semantic web applications can work with, and we are also going to study different technologies of E-commerce databases and we know that one of the most important deficits in semantic web is the shortage of semantic data, since most of the information is still stored in relational databases, we present an approach to map legacy data stored in relational databases into the Semantic Web using virtually any modern RDF query language, as long as it is closed within RDF. To achieve this goal we study XML structures for relational data bases of old websites and eventually we will come up one level over XML and look for a map from relational model (RDM) to RDF. Noting that a large number of semantic webs get advantage of relational model, opening the ways which can be converted to XML and RDF in modern systems (semantic web) is important.

Towards an Automatic Translation of Colored Petri Nets to Maude Language

Colored Petri Nets (CPN) are very known kind of high level Petri nets. With sound and complete semantics, rewriting logic is one of very powerful logics in description and verification of non-deterministic concurrent systems. Recently, CPN semantics are defined in terms of rewriting logic, allowing us to built models by formal reasoning. In this paper, we propose an automatic translation of CPN to the rewriting logic language Maude. This tool allows graphical editing and simulating CPN. The tool allows the user drawing a CPN graphically and automatic translating the graphical representation of the drawn CPN to Maude specification. Then, Maude language is used to perform the simulation of the resulted Maude specification. It is the first rewriting logic based environment for this category of Petri Nets.

Improved K-Modes for Categorical Clustering Using Weighted Dissimilarity Measure

K-Modes is an extension of K-Means clustering algorithm, developed to cluster the categorical data, where the mean is replaced by the mode. The similarity measure proposed by Huang is the simple matching or mismatching measure. Weight of attribute values contribute much in clustering; thus in this paper we propose a new weighted dissimilarity measure for K-Modes, based on the ratio of frequency of attribute values in the cluster and in the data set. The new weighted measure is experimented with the data sets obtained from the UCI data repository. The results are compared with K-Modes and K-representative, which show that the new measure generates clusters with high purity.

Analysis of Linked in Series Servers with Blocking, Priority Feedback Service and Threshold Policy

The use of buffer thresholds, blocking and adequate service strategies are well-known techniques for computer networks traffic congestion control. This motivates the study of series queues with blocking, feedback (service under Head of Line (HoL) priority discipline) and finite capacity buffers with thresholds. In this paper, the external traffic is modelled using the Poisson process and the service times have been modelled using the exponential distribution. We consider a three-station network with two finite buffers, for which a set of thresholds (tm1 and tm2) is defined. This computer network behaves as follows. A task, which finishes its service at station B, gets sent back to station A for re-processing with probability o. When the number of tasks in the second buffer exceeds a threshold tm2 and the number of task in the first buffer is less than tm1, the fed back task is served under HoL priority discipline. In opposite case, for fed backed tasks, “no two priority services in succession" procedure (preventing a possible overflow in the first buffer) is applied. Using an open Markovian queuing schema with blocking, priority feedback service and thresholds, a closed form cost-effective analytical solution is obtained. The model of servers linked in series is very accurate. It is derived directly from a twodimensional state graph and a set of steady-state equations, followed by calculations of main measures of effectiveness. Consequently, efficient expressions of the low computational cost are determined. Based on numerical experiments and collected results we conclude that the proposed model with blocking, feedback and thresholds can provide accurate performance estimates of linked in series networks.