A Genetic Algorithm Approach for Solving Fuzzy Linear and Quadratic Equations

In this paper a genetic algorithms approach for solving the linear and quadratic fuzzy equations Ãx̃=B̃ and Ãx̃2 + B̃x̃=C̃ , where Ã, B̃, C̃ and x̃ are fuzzy numbers is proposed by genetic algorithms. Our genetic based method initially starts with a set of random fuzzy solutions. Then in each generation of genetic algorithms, the solution candidates converge more to better fuzzy solution x̃b . In this proposed method the final reached x̃b is not only restricted to fuzzy triangular and it can be fuzzy number.

Terminal Velocity of a Bubble Rise in a Liquid Column

As it is known, buoyancy and drag forces rule bubble's rise velocity in a liquid column. These forces are strongly dependent on fluid properties, gravity as well as equivalent's diameter. This study reports a set of bubble rising velocity experiments in a liquid column using water or glycerol. Several records of terminal velocity were obtained. The results show that bubble's rise terminal velocity is strongly dependent on dynamic viscosity effect. The data set allowed to have some terminal velocities data interval of 8.0 ? 32.9 cm/s with Reynolds number interval 1.3 -7490. The bubble's movement was recorded with a video camera. The main goal is to present an original set data and results that will be discussed based on two-phase flow's theory. It will also discussed, the prediction of terminal velocity of a single bubble in liquid, as well as the range of its applicability. In conclusion, this study presents general expressions for the determination of the terminal velocity of isolated gas bubbles of a Reynolds number range, when the fluid proprieties are known.

Iterative Clustering Algorithm for Analyzing Temporal Patterns of Gene Expression

Microarray experiments are information rich; however, extensive data mining is required to identify the patterns that characterize the underlying mechanisms of action. For biologists, a key aim when analyzing microarray data is to group genes based on the temporal patterns of their expression levels. In this paper, we used an iterative clustering method to find temporal patterns of gene expression. We evaluated the performance of this method by applying it to real sporulation data and simulated data. The patterns obtained using the iterative clustering were found to be superior to those obtained using existing clustering algorithms.

Fuzzy Types Clustering for Microarray Data

The main goal of microarray experiments is to quantify the expression of every object on a slide as precisely as possible, with a further goal of clustering the objects. Recently, many studies have discussed clustering issues involving similar patterns of gene expression. This paper presents an application of fuzzy-type methods for clustering DNA microarray data that can be applied to typical comparisons. Clustering and analyses were performed on microarray and simulated data. The results show that fuzzy-possibility c-means clustering substantially improves the findings obtained by others.

Grid Computing for the Bi-CGSTAB Applied to the Solution of the Modified Helmholtz Equation

The problem addressed herein is the efficient management of the Grid/Cluster intense computation involved, when the preconditioned Bi-CGSTAB Krylov method is employed for the iterative solution of the large and sparse linear system arising from the discretization of the Modified Helmholtz-Dirichlet problem by the Hermite Collocation method. Taking advantage of the Collocation ma-trix's red-black ordered structure we organize efficiently the whole computation and map it on a pipeline architecture with master-slave communication. Implementation, through MPI programming tools, is realized on a SUN V240 cluster, inter-connected through a 100Mbps and 1Gbps ethernet network,and its performance is presented by speedup measurements included.