Towards a Sustainable Regeneration: The Case Study of the San Mateo Neighborhood, in Jerez de la Frontera (Andalusia)

Based on different experiences in the historic centers of Spain, we propose an global strategy for the regeneration of the pre-tertiary fabrics and its application to the specific case of San Mateo neighborhood, in Jerez de la Frontera (Andalusia), through a diagnosis that focus particularly on the punishments the last-decade economic situation (building boom and crisis) and shows the tragic transition from economic center to an imminent disappearance with an image similar to the ruins of war, due to the loss of their traditional roles. From it we will learn their historically-tested mechanisms of environment adaptation, which distill the vernacular architecture essence and that we will apply to our strategy of action based on a dotacional-and-free-space rhizome which rediscovers its hidden character. The architectural fact will be crystallized in one of the example-pieces proposed: The Artistic Revitalization Center.

Cultural Aspects Analyses in Sustainable Architecture

Social ideology, cultural values and principles shaping environment are inferred by environment and structural characteristics of construction site. In other words, this inference manifestation also indicates ideology and culture of its foundation and also applies its principles and values and somehow plays an important role in Cultural Revolution. All human behaviors and artifacts are affected and being influenced by culture. Culture is not abstract concept, it is a spiritual domain that an individual and society grow and develop in it. Social behaviors are affected by environmental comprehension, so the architecture work influences on its audience and it is the environment that fosters social behaviors. Indeed, sustainable architecture should be considered as background of culture for establishing optimal sustainable culture. Since unidentified architecture roots in cultural non identity and abnormalities, so the society possesses identity characteristics and life and as a consequence, the society and architecture are changed by transformation of life style. This article aims to investigate the interaction of architecture, society, environment and sustainable architecture formation in its cultural basis and analyzes the results approaching behavior and sustainable culture in recent era.

Compressed Adobe Technology Analyses as Local Sustainable Materials for Retrofitting against Earthquake Approaching India Experiences

Due to its geographical location, Iran is considered one of the earthquake-prone areas where the best way to decrease earthquake effects is supposed to be strengthening the buildings. Even though, one idea suggests that the use of adobe in constructing buildings be prohibited for its weak function especially in earthquake-prone areas, however, regarding ecological considerations, sustainability and other local skills, another idea pays special attention to adobe as one of the construction technologies which is popular among people. From the architectural and technological point of view, as strong sustainable building construction materials, compressed adobe construction materials make most of the construction in urban or rural areas ranging from small to big industrial buildings used to replace common earth blocks in traditional systems and strengthen traditional adobe buildings especially against earthquake. Mentioning efficient construction using compressed adobe system as a reliable replacement for traditional soil construction materials , this article focuses on the experiences of India in the fields of sustainable development of compressed adobe systems in the form of system in which the compressed soil is combined with cement, load bearing building with brick/solid concrete block system, brick system using rat trap bond, metal system with adobe infill and finally emphasizes on the use of these systems in the earthquake-struck city of Bam in Iran.

A Microscopic Simulation Model for Earthmoving Operations

Earthmoving operations are a major part of many construction projects. Because of the complexity and fast-changing environment of such operations, the planning and estimating are crucial on both planning and operational levels. This paper presents the framework ofa microscopic discrete-event simulation system for modeling earthmoving operations and conducting productivity estimations on an operational level.A prototype has been developed to demonstrate the applicability of the proposed framework, and this simulation system is presented via a case study based on an actual earthmoving project. The case study shows that the proposed simulation model is capable of evaluating alternative operating strategies and resource utilization at a very detailed level.

Lateral Pressure in Squat Silos under Eccentric Discharge

The influence of eccentric discharge of stored solids in squat silos has been highly valued by many researchers. However, calculation method of lateral pressure under eccentric flowing still needs to be deeply studied. In particular, the lateral pressure distribution on vertical wall could not be accurately recognized mainly because of its asymmetry. In order to build mechanical model of lateral pressure, flow channel and flow pattern of stored solids in squat silo are studied. In this passage, based on Janssen-s theory, the method for calculating lateral static pressure in squat silos after eccentric discharge is proposed. Calculative formulae are deduced for each of three possible cases. This method is also focusing on unsymmetrical distribution characteristic of silo wall normal pressure. Finite element model is used to analysis and compare the results of lateral pressure and the numerical results illustrate the practicability of the theoretical method.

Traditionally Sustainability Analyses of Hydraulic-Architectural Bridge Construction in Iran

Bridge is an architectural symbol in Iran as Badgir (wind catcher); fire temples and arch are vaults are such. Therefore, from the very old ages, construction of bridges in Iran has mixed with architecture, social customs, alms and charity and holiness. Since long ago, from Mad, Achaemenid, Parthian and Sassanid times which construction of bridges got an inseparable relation with social dependency and architecture, based on those dependency bridges and dams got holy names; as Dokhtar castle and Dokhtar bridges were constructed. This method continued even after Islam and whenever Iranians got free from political fights and the immunity of roads were established the bridge construction did also prospered. In ancient times bridge construction passes through it growing and completion process and in Sassanid time in some way it reached to the peak of art and glory; as after Islam especially during 4th. century (Arab calendar) it put behind a period of glory and in Safavid time it reached to an exceptional glory and magnificence by constructing glorious bridges on Zayandeh Roud River in Isfahan. Having a combined style and changeability into bridge barrier, some of these bridges develop into magnificent constructions. The sustainable structures, mentioned above, are constructed for various reasons as follows: connecting two sides of a river, storing water, controlling floods, using water energy to operate water windmills, making lanes of streams for farms- use, and building recreational places for people, etc. These studies carried in bridges reveals the fact that in construction and designing mentioned above, lots of technological factors have been taken into consideration such as exceeding floods in the rives, hydraulic and hydrology of the rivers and bridges, geology, foundation, structure, construction material, and adopting appropriate executing methods, all of which are being analyzed in this article.

Sustainable Architecture Analyses of Walls in Miyaneh Village Houses, Iran

Even though so many efforts have been taken to renovate and renew the architecture of Miyaneh villages in cold and dry regions of Iran-s northwest, these efforts failed due to lack of significant study and ignoring the past and sustainable history of those villages. Considering the overpopulation of Iran-s villages as well as the importance in preventing their immigration to cities, recognizing village architecture and its construction technology is of great significance to attain sustainable residence in villages. As the only vertical surface in the space, wall possesses its unique special characteristics, and it is also a very important architectural element able to provide the immunity and comfort space for the residents. This article analyzes the characteristics of this vertical element, main types of adobe and stone walls, locally constructed technologies, implementation, the elements forming the walls in the frame of village house typology of Miyaneh, which has the most villages in East Azerbaijan, based on sustainable architectural construction materials of walls.

Structural Analysis of Warehouse Rack Construction for Heavy Loads

In this study rack systems that are structural storage units of warehouses have been analyzed as structural with Finite Element Method (FEA). Each cell of discussed rack system storages pallets which have from 800 kg to 1000 kg weights and 0.80x1.15x1.50 m dimensions. Under this load, total deformations and equivalent stresses of structural elements and principal stresses, tensile stresses and shear stresses of connection elements have been analyzed. The results of analyses have been evaluated according to resistance limits of structural and connection elements. Obtained results have been presented as visual and magnitude.

Comparative Study of Sustainable Architecture in Stairway-like Ushtobin Village, Iran

Stairway Ushtobin Village is one of the five villages with original and sustainable architecture in Northwest of Iran along the border of Armenia, which has been able to maintain its environment and sustainable ecosystem. Studying circulation, function and scale (grand, medium and minor) of space, ratio of full and empty spaces, number and height of stairs, ratio of compound volume to luxury spaces, openings, type of local masonry (stone, mud, wood) and form of covering elements have been carried out in four houses of this village comparatively as some samples in this article, and furthermore, this article analyzes that the architectural shapes and organic texture of the village meet the needs of cold and dry climate. Finally, some efficient plans are offered suiting the present needs of the village to have a sustainable architecture.

Walking and Sustainable Urban Transportation

Walking as a type of non-motorized transportation has various social, economical and environmental privileges. Also, today different aspects of sustainable development have been emphasized and promotion of sustainable transportation modes has been considered according to this approach. Therefore, the objective of this research is exploring the circumstance of relationship between walking and sustainable urban transportation.For writing this article, the most important resources related to the traits of walking have been surveyed via a documentary method and after explaining the concept of sustainable transportation and its indicators, benefiting from the viewpoints of transportation experts of Tehran, as the capital and greatest city of Iran, different modes of urban transportation have been compared in proportion to each criterion and to each other and have been analyzed according to AHP method. The results of this study indicate that walking is the most sustainable mode of inner city transportation.

Moisture Diffusivity of AAC with Different Densities

Method of determining of moisture diffusivity on two types of autoclaved aerated concretes with different bulk density is represented in the paper. On the specimens were measured one dimensional water transport only on liquid phase. Ever evaluation was done from moisture profiles measured in specific times by capacitance moisture meter. All values from capacitance meter were recalculated to moisture content by mass. Moisture diffusivity was determined in dependence on both moisture and temperature. The experiment temperatures were set at values 55, 65, 75 and 85°C.

Qanat (Subterranean Canal) Role in Traditional Cities and Settlements Formation of Hot-Arid Regions of Iran

A passive system "Qanat" is collection of some underground wells. A mother-well was dug in a place far from the city where they could reach to the water table maybe 100 meters underground, they dug other wells to direct water toward the city, with minimum possible gradient. Using the slope of the earth they could bring water close to the surface in the city. The source of water or the appearance of Qanat, land slope and the ownership lines are the important and effective factors in the formation of routes and the segment division of lands to the extent that making use of Qanat as the techniques of extracting underground waters creates a channel of routes with an organic order and hierarchy coinciding the slope of land and it also guides the Qanat waters in the tradition texture of salt desert and border provinces of it. Qanats are excavated in a specified distinction from each other. The quantity of water provided by Qanats depends on the kind of land, distance from mountain, geographical situation of them and the rate of water supply from the underground land. The rate of underground waters, possibility of Qanat excavation, number of Qanats and rate of their water supply from one hand and the quantity of cultivable fertile lands from the other hand are the important natural factors making the size of cities. In the same manner the cities with several Qanats have multi central textures. The location of cities is in direct relation with land quality, soil fertility and possibility of using underground water by excavating Qanats. Observing the allowable distance for Qanat watering is a determining factor for distance between villages and cities. Topography, land slope, soil quality, watering system, ownership, kind of cultivation, etc. are the effective factors in directing Qanats for excavation and guiding water toward the cultivable lands and it also causes the formation of different textures in land division of farming provinces. Several divisions such as orderly and wide, inorderly, thin and long, comb like, etc. are the introduction to organic order. And at the same time they are complete coincidence with environmental conditions in the typical development of ecological architecture and planning in the traditional cities and settlements order.

Determination of Moisture Content and Liquid Limit of Foundations Soils, using Microwave Radiation, in the Different Locations of Sulaimani Governorate, Kurdistan Region-Iraq

Soils are normally dried in either a convection oven or stove. Laboratory moisture content testing indicated that the typical drying durations for a convection oven were, 24 hours. The purpose of this study was to determine the accuracy and soil drying duration of both, moisture content and liquid limit using microwave radiation. The soils were tested with both, convection and microwave ovens. The convection oven was considered to produce the true values for both, natural moisture content and liquid limit of soils; it was, therefore, used as a basis for comparison for the results of the microwave ovens. The samples used in this study were obtained from different projects of Consulting Engineering Bureau of College of Engineering of Sulaimani University. These samples were collected from different locations and at the different depths and consist mostly of brown and light brown clay and silty clay. A total of 102 samples were prepared. 26 of them were tested for natural moisture determination, while the other 76 were used for liquid limits determination

Study on Numerical Simulation Applied to Moisture Buffering Design Method – The Case Study of Pine Wood in a Single Zone Residential Unit in Taiwan

A good green building design project, designers should consider not only energy consumption, but also healthy and comfortable needs of inhabitants. In recent years, the Taiwan government paid attentions on both carbon reduction and indoor air quality issues, which be presented in the legislation of Building Codes and other regulations. Taiwan located in hot and humid climates, dampness in buildings leads to significant microbial pollution and building damage. This means that the high temperature and humidity present a serious indoor air quality issue. The interactions between vapor transfers and energy fluxes are essential for the whole building Heat Air and Moisture (HAM) response. However, a simulation tool with short calculation time, property accuracy and interface is needed for practical building design processes. In this research, we consider the vapor transfer phenomenon of building materials as well as temperature and humidity and energy consumption in a building space. The simulation bases on the EMPD method, which was performed by EnergyPlus, a simulation tool developed by DOE, to simulate the indoor moisture variation in a one-zone residential unit based on the Effective Moisture Penetration Depth Method, which is more suitable for practical building design processes.

Evolutionary Multi-objective Optimization for Positioning of Residential Houses

The current study describes a multi-objective optimization technique for positioning of houses in a residential neighborhood. The main task is the placement of residential houses in a favorable configuration satisfying a number of objectives. Solving the house layout problem is a challenging task. It requires an iterative approach to satisfy design requirements (e.g. energy efficiency, skyview, daylight, roads network, visual privacy, and clear access to favorite views). These design requirements vary from one project to another based on location and client preferences. In the Gulf region, the most important socio-cultural factor is the visual privacy in indoor space. Hence, most of the residential houses in this region are surrounded by high fences to provide privacy, which has a direct impact on other requirements (e.g. daylight and direction to favorite views). This investigation introduces a novel technique to optimally locate and orient residential buildings to satisfy a set of design requirements. The developed technique explores the search space for possible solutions. This study considers two dimensional house planning problems. However, it can be extended to solve three dimensional cases.

Human Induced Dynamic Loading on Stairs

Based on experimental data using accelerometry technology there was developed an analytical model that approximates human induced ground reaction forces in vertical, longitudinal and lateral directions ascending and descending the stairs. Proposed dynamic loading factors and corresponding phase shifts for the first five harmonics of continuous walking force history in case of stair ascend and descend. Into account is taken imperfectness of individual footfall forcing functions, differences between continuous walking force histories among individuals. There is proposed mean synthetic continuous walking force history that can be used in numerical simulations of human movement on the stairs.

Convection through Light Weight Timber Constructions with Mineral Wool

The major part of light weight timber constructions consists of insulation. Mineral wool is the most commonly used insulation due to its cost efficiency and easy handling. The fiber orientation and porosity of this insulation material enables flowthrough. The air flow resistance is low. If leakage occurs in the insulated bay section, the convective flow may cause energy losses and infiltration of the exterior wall with moisture and particles. In particular the infiltrated moisture may lead to thermal bridges and growth of health endangering mould and mildew. In order to prevent this problem, different numerical calculation models have been developed. All models developed so far have a potential for completion. The implementation of the flow-through properties of mineral wool insulation may help to improve the existing models. Assuming that the real pressure difference between interior and exterior surface is larger than the prescribed pressure difference in the standard test procedure for mineral wool ISO 9053 / EN 29053, measurements were performed using the measurement setup for research on convective moisture transfer “MSRCMT". These measurements show, that structural inhomogeneities of mineral wool effect the permeability only at higher pressure differences, as applied in MSRCMT. Additional microscopic investigations show, that the location of a leak within the construction has a crucial influence on the air flow-through and the infiltration rate. The results clearly indicate that the empirical values for the acoustic resistance of mineral wool should not be used for the calculation of convective transfer mechanisms.

Contextual Factors in the Decision Making of Industrialized Building System Technology

Currently, the Malaysian construction industry is focusing on transforming construction processes from conventional building methods to the Industrialized Building System (IBS). Still, research on the decision making of IBS technology adoption with the influence of contextual factors is scarce. The purpose of this paper is to explore how contextual factors influence the IBS decision making in building projects which is perceived by those involved in construction industry namely construction stakeholders and IBS supply chain members. Theoretical background, theoretical frameworks and literatures which identify possible contextual factors that influence decision making towards IBS technology adoption are presented. This paper also discusses the importance of contextual factors in IBS decision making, highlighting some possible crossover benefits and making some suggestions as to how these can be utilized. Conclusions are drawn and recommendations are made with respect to the perception of socio-economic, IBS policy and IBS technology associated with building projects.

The Study on the Development of Ornamentation in the Architecture of Safavid Dynasty

The architecture of Safavid Dynasty can be considered the epitome of Iranian architectural beauty. Safavid dynasty (1501- 1722 AC) along with Ottoman in Turkey and Mughal Empire in India were the three great Islamic nations of their time (1500 AC) often known as the last Islamic countries with international authority up to the 20th Century. This era approximately coincide with Renaissance in Europe. In this era, large European countries begin amassing power thanks to significant scientific, cultural and religious revolutions of that time and colonizing nations such as England, Spain and Portugal began to influence international trends with in an increasing while other non-industrial nations diminished. The main objective of this paper is to give a typological overview of the development of decoration and ornament in the architecture of Safafid Dynasty in Iran. It is expected that it can start a wider discussion to enrich this nation-s heritage and contribute to the development of Islamic ornament in general.

Identification of Roadway Wavelengths Affecting the Dynamic Responses of Bridges due to Vehicular Loading

The bridge vibration due to traffic loading has been a subject of extensive research during the last decades. A number of these studies are concerned with the effects of the unevenness of roadways on the dynamic responses of highway bridges. The road unevenness is often described as a random process that constitutes of different wavelengths. Thus, the study focuses on examining the effects of the random description of roadways on the dynamic response and its variance. A new setting of variance based sensitivity analysis is proposed and used to identify and quantify the contributions of the roadway-s wavelengths to the variance of the dynamic response. Furthermore, the effect of the vehicle-s speed on the dynamic response is studied.