The Photon-Drag Effect in Cylindrical Quantum Wire with a Parabolic Potential

Using the quantum kinetic equation for electrons interacting with acoustic phonon, the density of the constant current associated with the drag of charge carriers in cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field and a laser radiation field is calculated. The density of the constant current is studied as a function of the frequency of electromagnetic wave, as well as the frequency of laser field and the basic elements of quantum wire with a parabolic potential. The analytic expression of the constant current density is numerically evaluated and plotted for a specific quantum wires GaAs/AlGaAs to show the dependence of the constant current density on above parameters. All these results of quantum wire compared with bulk semiconductors and superlattices to show the difference.





References:
[1] M. F. Kimmitt, C. R. Pidgeon, D. A. Jaroszynski, R. J. Bakker, A. F. G. Van Der Meer, and D. Oepts, “Infrared free electron laser measurement of the photon darg effect in P-Silicon”, Int. J. Infrared Millimeter Waves, vol 13, No 8, pp. 1065, 1992.
[2] A. Grinberg and Luryi, “Theory of the photon - drag effect in a two-dimensional electron gas”, Phys. Rev. B 38, pp. 87, 1988.
[3] S. D. Ganichev, H. Ketterl, and W. Prettl, “Spin-dependent terahertz nonlinearities at inter-valance-band absorption in p-Ge”, Physica B 272, pp. 464-466, 1999.
[4] G. M. Shmelev, L. A. Chaikovskii and N. Q. Bau, “HF conduction in semiconductors superlattices”, Sov. Phys. Tech. Semicond, Vol 12, No. 10, pp. 1932, 1978.
[5] N. Q. Bau, D. M. Hung and L. T. Hung, “The influences of confined phonons on the nonlinear absorption coefficient of a strong electromagnetic wave by confined electrons in doping superlattices”, PIER Letters, Vol. 15, pp. 175-185, 2010.
[6] V. L. Malevich Izv, “High-frequency conductivity of semiconductors in a laser radiation field”, Radiophysics and quantum electronics, Vol. 20, Issue 1, pp. 98-101, 1977.
[7] S. V. Kryuchkov, E. I. Kukhar’ and E. S. Sivashova, “Radioelectric effect in a superlattice under the action of an elliptically polarized electromagnetic wave”, Physics of the Solid State, vol 50, No. 6, pp. 1150-1156, 2008.
[8] N. Q. Bau and D. M. Hung, “Calculating of the nonlinear absorption coefficient of a strong electromagnetic wave by confined electrons in doping superlattices”, PIER B 25, pp. 39-52, 2010.
[9] N. Q. Bau and B. D. Hoi, “Influence of a strong electromagnetic wave (Laser radiation) on the Hall effect in quantum well with a parabolic potential”, J. Korean Phys. Soc, Vol. 60, pp. 59-64, 2012.
[10] G. M. Shmelev, G. I. Tsurkan and É. M. Épshtein, “Photostumilated radioelectrical transverse effect in semiconductors”, Phys. Stat. Sol. B, Vol. 109, pp. 53, 1982.
[11] N. Q. Bau, D. M. Hung and N. B. Ngoc, “The nonlinear absorption coefficient of a strong electromagnetic wave caused by confined electrons in quantum wells”, J. Korean Phys. Soc 54, pp. 765-773, 2009.
[12] G. M. Shmelev, N. H. Shon, G. I. Tsurkan, “Photostumulated even acousto-electric effect”, Izv. Vyssh. Uchebn. Zaved. Fiz. 28, pp. 84, 1985.