The Layered Transition Metal Dichalcogenides as Materials for Storage Clean Energy: Ab initio Investigations

Transition metal dichalcogenides have potential applications in power generation devices that convert waste heat into electric current by the so-called Seebeck and Hall effects thus providing an alternative energy technology to reduce the dependence on traditional fossil fuels. In this study, the thermoelectric properties of 1T and 2HTaX2 (X= S or Se) dichalcogenide superconductors have been computed using the semi-classical Boltzmann theory. Technologically, the task is to fabricate suitable materials with high efficiency. It is found that 2HTaS2 possesses the largest value of figure of merit ZT= 1.27 at 175 K. From a scientific point of view, we aim to model the underlying materials properties and in particular the transport phenomena as mediated by electrons and lattice vibrations responsible for superconductivity, Charge Density Waves (CDW) and metal/insulator transitions as function of temperature. The goal of the present work is to develop an understanding of the superconductivity of these selected materials using the transport properties at the fundamental level.




References:
[1] J.A. Wilson, F.J. Di Salvo and S. Machajan, Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides, Adv. Phys. 24 (1975) 117-201.
[2] V. Vescoli, L. Degiorgi, H. Berger and L. Forro, The optical properties of the correlated two-dimensional 2H-TaSe 2 system, Synthetic Metals 103 (1999) 2655-2657.
[3] E. Morosan, H.W. Zandbergen, B.S. Dennis, J.W.G. Bos, Y. Onose, T. Klimczuk, A.P. Ramirez, N.P. Ong, R.J. Cava, Superconductivity in Cu x TiSe 2, Nat. Phys. 2 (2006) 544-550.
[4] C.M. Fang, R.A. de Groot, C. Haas, Bulk and surface electronic structure of 1T−TiS2 and 1T−TiSe2, Phys. Rev. B 56 (1997) 4455-4463.
[5] A. Ramasubramaniam, D. Naveh, E. Towe, Tunable band gaps in bilayer transition-metal dichalcogenides, Phys. Rev. B 84 (2011) 205325.
[6] K.S. Chandra Babu, O.N. Srivastava, Photoelectrochemical solar cells based on TiS2/TiO2(TiOxSy) photoelectrodes, Cryst. Res. Technol. 23 (1988) 4.
[7] H. Tributsch, Ber. Bunsenges., Layer-Type Transition Metal Dichalcogenides - A New Class of Electrodes for Electrochemical Solar Cells, Phys. Chem. 81 (1977) 361-369.
[8] B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jorgrnsen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Norskov, MoS 2 nanoparticles for hydrogen evolution: A combined UHV/STM and electrochemical study, J. Am. Chem. Soc. 127 (2005) 5308-5309.
[9] T. Osaki, T. Horiuchi, K. Suzuki, T. Mori, Catalyst performance of MoS 2 and WS 2 for the CO2 -reforming of CH 4 Suppression of carbon deposition. Appl. Catal. A 155 (2) (1997) 229- 238.
[10] J. Rouxel, Chalcogénures Lamelaires et Intercalaires Alcalins, Materials Science and Engineering 31 (1977) 277-280.
[11] E. Endo, S. Nakao, W. Yamaguchi, T. Hasegawa, K. Kitazawa, Influence of CDW stacking disorder on metal-insulator transition in 1T-TaS 2, Solid State Communications 116 (2000) 47-50.
[12] F. Kneidinger, E. Bauer, I. Zeiringer, P. Rogl, C. Blaas-Schenner, D. Reith, R. Podloucky, Superconductivity in non-centrosymmetric materials, Physica C 514 (2015) 388– 398.
[13] C.C. Chang, T.K. Chen, W.C. Lee, P.H. Lin, M.J. Wang, Y.C. Wen, P.M. Wu, M.K. Wu, Superconductivity in Fe-chalcogenides, Physica C 514 (2015) 423–434].
[14] B.C. Tofield, Materials for Energy Conservation and storage, Applied Energy 8 (1981) 89-142.
[15] Koji Horiba, Kanta Ono, Han Woong Yeom, Yoshihiro Aiura, Osamu Shiino, Jin Ho Oh, Takayuki Kihara, Shinsuke Nakazono, Masaharu Oshima, Akito Kakizaki, Angle-resolved photoemission study in the commensurate CDW phase of 1T-TaSe 2, Physica B 284-288 (2000) 1665-1666.
[16] Sangeeta Sharma, S. Auluck and M. A. Khan, Optical properties of 1T and 2H phase of TaS 2 and TaSe2, Pramana, I. Phys. 54 (1999) 431–440.
[17] Hiroya Sakurai, Yoshihiko Ihara, Kazunori Takada, Superconductivity of cobalt oxide hydrate, Na x (H 3 O) z CoO 2-y H 2 O, Physica C 514 (2015) 378–387.
[18] P. Samuely, P. Szabo, J. Kacmarcit, A.G.M. Jansen, A. Lafond, A. Meerschaut, A. Briggs, Two dimensional behavior of the naturally layered superconductor (LaSe)1.14 (NbSe2), Physica C 369 (2002) 61–67.
[19] R. Kubo, Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems, Journal of the Physical Society of Japan, 12 (1957) 570-586.
[20] J.M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids, Oxford University Press, USA, 2001, pp. 1-56.
[21] R.H. Bube, W.H. McCarroll, Photoconductivity in indium sulfide powders and crystals, J. Phys. Chem. Solids 10 (1959) 333-335.
[22] Georg K.H. Madsen, David J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities, Computer Physics Communications 175 (2006) 67-71.
[23] D.M. Rowe, C.M. Bhandari, Modern Thermoelectrics, Holt Saunders, London, 1983, pp.64.
[24] Mian Liu, Xiaoying Qin, Changsong Liu, Xiyu Li, Xiuhui Yang, Enhanced thermoelectric performance with participation of F-electrons in b-Zn 4 Sb 3, Journal of Alloys and Compounds 584 (2014) 244–248.
[25] R.H. Craven, S.F. Meyer, Specific heat and resistivity near the charge-density-wave phase transitions in 2H−TaSe2 and 2H−TaS2, Phys. Rev. B, 16 (1977) 4583.
[26] A.H. Thompson, R.F. Gamble and F.R. Koehler Jr, Effects of intercalation on electron transport in tantalum disulfide, Phys. Rev. B5 (1972) 2811-2816.
[27] B. Dreyfus and R. Maynard, Analyse de la conductibilité thermique du graphite. - II. théorie, J. of Phys. 28 (1967) 955-966.
[28] M. Bremholm, Y.S. Hor, R.J. Cava, Pressure stabilized Se–Se dimer formation in PbSe2, Solid State Sciences 13 (2011) 38-41.
[29] John Bosco Balaguru Rayppan, S. Alfred, Cecil Raj, N. Lawrence, Thermal properties of 1T TaS2 at the onset of charge density wave states, Physica B Condense Matter 405 (2010) 3172-3175.
[30] R John Bosco Balaguru, S. Alfred, Cecil Raj, N. Lawrence, Lattice Instability of 2H – TaSe2, Int. J. Mod. Phys. B 16 (2002) 4111.
[31] Arthur P. Ramirez, Superconductivity in alkali-doped C60, Physica C 514 (2015) 166–172.
[32] R. Friend, A.R. Beal, A.D. Yoffe, Electrical and magnetic properties of some first row transition metal intercalates of niobium disulphide, Phil. Mag. 35 (1977) 1269.
[33] E. Doni and R. Girlanda, Electronic Structure and Electronic Transitions in Layered Materials, five ed., Grasso, Dordrecht, 1986.
[34] O. Seifarth, S. Gliemann, M. Skibowski, L. Kipp, On the charge-density-wave mechanism of layered 2H-TaSe2: photoemission results, Journal of Electron Spectroscopy and Related Phenomena 137-140 (2004) 675-679.
[35] J.P. Tidman, O. Singh, A.E. Curzon, R.H. Friend, The phase transition in 2H-TaS2 at 75 K, Phil. Mag. 30 (1974) 1191.
[36] Souheyr Meziane, Houda Feraoun, Tarik Ouahrani, Claude Esling, Effects of Li and Na intercalation on electronic, bonding and thermoelectric transport properties of MX 2 (M = Ta; X = S or Se) dichalcogenides – Ab initio investigation, Journal of Alloys and Compounds 581 (2013) 731 740.
[37] R.M. Fleming, R.V. Colman, Superconductivity in Dilute Alloys of TaS2 with Fe, Phys. Rev. Lett. 34 (1975) 1502-1505.
[38] X.D. Zhu, Y.P. Sun, X.B. Zhu, X. Luo, B.S. Wang, G. Li, Z.R. Yang, W.H. Song, J.M. Dai, Single crystal growth and characterizations of Cu0.03TaS2 superconductors, J. Cryst. Growth 311 (2008) 218.
[39] C. Haas, Indirect metal-metal interactions in solids: Relation with polarization and charge density waves, Journal of Solid State Chemistry 57 (1985) 82-96.
[40] Paz Vaqueiro, Gerard G Sobany, Fabien Guinet, Patricia Leyva-Bailen, Synthesis and characterisation of the anion-ordered tellurides MGeTe (M = Co, Rh), Solid State Sciences 11 (2009) 1077-1082.
[41] D.E. Monton, J.D. Axe, F.J. Disalvo, Neutron scattering study of the charge-density wave transitions in 2H−TaSe 2 and 2H−NbSe 2, Phys. Rev. B 16 (1977) 801.
[42] M.D. Nunez Regueiro, J.M. Lopez – Castillo, C. Ayache, Thermal Conductivity of 1T- TaS2 and 2H-TaSe2, Phys. Rev. Lett. 55 (1985) 1931.
[43] Richard A. Klemm, Pristine and intercalated transition metal dichalcogenide superconductors, Physica C 514 (2015) 86–94.
[44] D. Gutierrez, O. Pena, P. Duran, C. Moure, Crystal Structure, Electrical Conductivity and Seebeck Coefficient of Y(Mn,Ni)O3 Solid Solution, Journal of European Ceramic Society 22 (2002) 567-572.
[45] F. Zwick, H. Berger, I. Vobonik, G. Margaritondo, L. Forro, C. Beeli, M. Onellion, G. Panaccione, A. Taleb-Ibrahimi, M. Grioni, Spectral Consequences of Broken Phase Coherence in 1T- TaS2, Phys. Rev. Lett. 81 (1998) 1058.