The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia

Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of acquiring new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used in this work is to analyze the dynamics of different brain areas during a cognitive activity to find the relationships between the other areas analyzed to understand the functioning of neural networks better. Also, the latest advances in neuroscience have revealed the exis-tence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neurodevelopmental difficulties for their subsequent assessment and therapy. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process, specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho-pedagogical plans that allow obtaining an optimal integral development of the affected people.






References:
[1] R, Price, D. Ansari. Dyscalculia: Characteristics, Causes, and Treat-ments. Numeracy, 6(1), pp. 2, (2013).
[2] G. Milla´ Atencion´ temprana de las dificultades de aprendizaje. Rev Neurol, 42(Supl 2), pp. 153-156, (2006).
[3] M.I. Garc´ıa-Planas, M.V. Garc´ıa-Camba Vives. Dyscalculia, mind, calcu-lating brain and education. In EDULEARN18: 10th Annual International Conference on Education and New Learning Technologies, Proceedings book, pp. 0480-0489, (2018).
[4] J.A: Portellano. Neuropsicolog´ıa infantil. Madrid, Espana˜ S´ıntesis. (2008).
[5] M. Amalric, S. Dehaene. Origins of the brain networks for advanced mathematics in expert mathematicians. Proc Natl Acad Sci. 113(18), pp. 4909–4917, (2016).
[6] M.V. Garc´ıa-Camba Vives, M.I. Garc´ıa-Planas. Neurofisiolog´ıa del pro-ceso de escritura digital. Dislexia digital. XXIV Reunio´ Anual de l’SCN, Barcelona, Espana˜. 2020.
[7] M.V. Garc´ıa-Camba Vives, M.I. Garc´ıa-Planas. Auditory Brainstem Re-sponse in Wave VI for the Detection of Learning Disabilities. Preprint. 2020.
[8] M.V. Garc´ıa-Camba Vives, M.I. Garc´ıa-Planas. Neurociencia cognitiva y proceso de aprendizaje. XXIII Reunio´ Anual de l’SCN, Barcelona, Espana˜. 2019.
[9] R.C Anderson, R.G Emerson, K.C. Dowling and N.A. Feldstein. Improve-ment in brainstem auditory evoked potentials after suboccipital decom-pression in patients with Chiari malformations. Journal of neurosurgery, 98(3), pp. 459-464, (2003).
[10] M. Gallardo, and C. Vera. Estudio de la v´ıa auditiva central por medio de las respuestas evocadas auditivas del tronco encefalico´ (ABR), en ninos˜ con retraso en el lenguaje. In Anales de la Facultad de Medicina 64(1), pp. 27-33. UNMSM. Facultad de Medicina. 2003.
[11] E. Hernandez´-Zamora, and A. Poblano. La v´ıa auditiva: niveles de integracion´ de la informacion´ y principales neurotransmisores. Gaceta medica´ de Mexico,´ 150(5), pp. 450-460, (2014).