Silicon Application and Nitrogen on Yield and Yield Components in Rice (Oryza sativa L.) in Two Irrigation Systems

Silicon is a beneficial element for plant growth. It helps plants to overcome multiple stresses, alleviates metal toxicity and improves nutrient imbalance. Field experiment was conducted as split-split plot arranged in a randomized complete block design with four replications. Irrigation system include continues flooding and deficit as main plots and nitrogen rates N0, N46, N92, and N138 kg/ha as sub plots and silicon rates Si0 & Si500 kg/ha as sub-subplots. Results indicate that grain yield had not significant difference between irrigation systems. Flooding irrigation had higher biological yield than deficit irrigation whereas, no significant difference in grain and straw yield. Nitrogen application increased grain, biological and straw yield. Silicon application increased grain, biological and straw yield but, decreased harvest index. Flooding irrigation had higher number of total tillers / hill than deficit irrigation, but deficit irrigation had higher number of fertile tillers / hill than flooding irrigation. Silicon increased number of filled spikelet and decreased blank spikelet. With high nitrogen application decreased 1000-grain weight. It can be concluded that if the nitrogen application was high and water supplied was available we could have silicon application until increase grain yield.

[1] Koutroubas, S.D. and D.A. Ntanos, 2003. Genotype differences for
grain yield and nitrogen utilization in indica and japonica rice under
Mediterranean conditions. Field Crops Res., 83:251-260.
[2] Tirol-Padre, A., J.K. Ladha, U. Singh, E. Laureles, G. Punzalan and S.
Akita, 1996. Grain yield performance of rice genotypes at suboptimal
levels of soil N as affected by N uptake and utilization efficiency. Field
Crops Res., 46:127-143.
[3] Dalling, M.J., 1985. The physiological basis of nitrogen redistribution
during filling in cereals. p. 55-71. In J.E. Harper et al. (ed.) Exploitation
of physiological and genetic variability to enhance crop productivity.
Am. Soc. of Plant Physiologists, Rockville, MD.
[4] Mae, T., 1997. Physiological nitrogen efficiency in rice: Nitrogen
utilization, photosynthesis, and yield potential. Plant Soil, 196:201-210.
[5] Liu, D., 1991. Efficient use of nitrogen in crop production. Ext. Bull.
340. Food & Fertilizer Technology Center, Taiwan.
[6] Saito, M., 1991. Soil management for the conservation of soil nitrogen.
Ext. Bull. 341. Food & Fertilizer Technology Center, Taiwan.
[7] Senanayake, N., R.E.L. Naylor, S.K. De Datta and W.J. Thomson,
1994. Variation in development of contrasting rice cultivars. J. Agric.
Science, 123:35-39.
[8] Bohlool, B.B., J.K. Ladha, D.P. Garrity, and T. George, 1992.
Biological nitrogen fixation for sustainable agriculture: A perspective.
Plant Soil, 141:1-11.
[9] Singh, U., J.K. Ladha, E.G. Castillo, G. Punzalan, A. Tirol-Padre and
M. Duqueza. 1998. Genotypic variation in nitrogen use efficiency in
medium and long-duration rice. Field Crops Res., 58:35-53.
[10] Mosse, J., 1990. Nitrogen to protein conversion factor for ten cereals
and six legumes or oilseeds. A reappraisal of its definition and
determination. Variation according to species and to seed protein
content. J. Agric. Food Chem., 38:18-24.
[11] Obanni, M., C. Mitchell and D. Medcalf. 1998. Healthy ingredients and
foods from rice. Cereal Foods World, 43:696-698.
[12] Deren, C.W., L.E. Datnoff, G.H. Snyder and F.G. Martin, 1994. Silicon
concentration, disease response, and yield components of rice
genotypes grown on flooded organic Histosols. Crop Science, 34:733-
[13] Savant, N.K., L.E. Datnoff and G.H. Snyder, 1997. Depletion of plantavailable
silicon in soils: A possible cause of declining rice yields.
Commun. Soil Science Plant Anal., 28:1245-1252.
[14] Mauad, M., C.A.C. Crusciol, H. Grassi Filho and J.C. Correa, 2003.
Nitrogen and silicon fertilization of upland rice. Scientia Agricola, 60:
[15] Yoshida, S., Y. Ohnishi, K. Kitagishi, 1962. Chemical forms, mobility
and deposition of silicon in rice plant. Soil Science and Plant Nutrition,
[16] Yoshida, S., S.A. Naveser, E.A. Ramirez, 1969. Effects of silica and
nitrogen supply on some leaf characters of rice plant. Plant and Soil,
[17] Ma, J.F., K. Nishimra, E. Takahashi, 1989. Effect of silicon on the
growth of rice plant at different growth stages. Soil Science and Plant
Nutrition, 35:347-356.
[18] Takahashi, E., 1995. Uptake mode and physiological functions of silica.
In: Matusuo, T., K. Kumazawa, R. Ishii, K. Ishihara, H Hirata, Science
of rice plant physiology. Tokio: Nobunkyo, 2(5):420-433.
[19] Balastra, M.L.F., C.M. Perez, B.O. Juliano, P. Villreal, 1989. Effects of
sílica level on some proprieties of Oriza sativa straw and hult. Canadian
Journal of Botany, 67:2356-2363.
[20] Ma, J.F., 2004. Role of silicon in enhancing the resistance of plants to
biotic and abiotic stresses. Soil Sci. Plant Nutr., 50:11-18.
[21] Datnoff, L.E., C.W. Deren and G.H. Snyder, 1997. Silicon fertilization
for disease management of rice in Florida. Crop Protection, 16:525-531.
[22] Ma, J.F. and E. Takahashi, 2002. Soil, fertilizer, and plant silicon
research in Japan. Amsterdam: Elsevier Science.
[23] Epstein, E., 1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol.,
[24] Seebold, K., L.E. Datnoff, V.F. Correa and G.H. Snyder, 1995. Effects
of silicon and fungicides on leaf and neck blast development in rice.
(Abstr.) Phytopathology, 85:1168.
[25] Seebold, K.W., L.E. Datnoff, F.J. Correa-Victoria, T.A. Kucharek, and
G.H. Snyder, 2000. Effect of silicon rate and host resistance on blast,
scald, and yield of upland rice. Plant Dis., 84:871-876.
[26] De Datta, S.K., 1981. Principles and Practices of Rice Production. John
Wiley & Sons, New York.
[27] Thurston, H.D., 1984. Rice blast. Pages 31-40 in: Tropical Plant
Diseases. American Phytopathological Society, St. Paul, MN.
[28] Bonman, J. M., B. A. Estrada, C. K. Kim, D.S. Ra and E.J. Lee, 1991.
Assessment of blast disease and yield loss in susceptible and partially
resistant rice cultivars in two irrigated lowland environments. Plant
Dis., 75:462-466.
[29] Elawad, S.H. and V.E. Green, 1979. Silicon and the rice plant
environment: A review of recent research. Il Riso, 28:235-253.
[30] Epstein, E., 1991. The anomaly of silicon in plant biology. Proc. Natl.
Acad. Sci., USA, 91:11-17.
[31] Savant, N.K., G.H. Snyder and L.E. Datnoff, 1997. Silicon management
and sustainable rice production. Advance Agronomy, 58:151-199.
[32] Winslow, M.D., 1992. Silicon, disease resistance, and yield of rice
genotypes under upland cultural conditions. Crop Science, 32:120 8-
[33] Yoshida, S., 1975. The physiology of silicon in rice. Technical Bulletin
No. 25. Food Fertilization Technology Center, Taipei, Taiwan.
[34] Elliot, C.L., and G.H. Snyder, 1991. Autoclave-induced digestion for
the colorimetric determination of silicon in rice straw. J. Agric. Food
Chem., 39:1118-1119.
[35] Melo, S.P. G.H. Korndorfer, C.M. Korndorfer, R. M.Q. Lana, D.G.
Santana, 2003. Silicon accumulation and water deficit tolerance in
Brachiaria grasses. Scientia Agricola, 60(4):755-759.
[36] Clark, R.B., C.I. Flores, L.M. Gourley, R.R. Duncan, 1990. Mineral
element concentration and grain field of sorghum (Sorghum bicolor)
and pearl millet (Penniserum glaucom) grow on acid soil. In: VAN
BEUSICHEM, M.L. (Ed.) Plant nutrition-physiology and applications.
Academic, 391-396.
[37] Okuda, A., and E. Takahashi, 1962. Studies on the physiological role of
silicon in crop plant: VIII. Some examination on the specific behavior
of low land rice in silicon uptake. J. Soil Sci Manure Jpn., 33: 217-221.
[38] Takahashi, E., J.F. Ma, Y. Miyake, 1990. The possibility of silicon as
an essential element for higher plants. Comments on Agricultural and
Food Chemistry, 2: 99-122.
[39] Jones, L.H.P., and K.A Handreck, 1967. Silica in soils, plants, and
animals. Adv. Agron., 19:107-49.
[40] Agarie, S., Uchida, H.; Agata, W., Kubota, F. and P.B. Kaufman, 1998.
Effects of silicon on transpiration and leaf conductance in rice plants
(Oryza sativa L.). Plant Production Science, 1:89-95.
[41] Ma, J.F., Y. Miyake and E. Takahashi, 2001. Silicon as a beneficial
element for crop plants. In: DATNOFF, L.E.; SNYDER, G.H.;
KORNDÖRFER, G.H. Silicon in agriculture. Studies in plant science,
Amsterdam: Elsevier, 8(2)17-39.
[42] Korndorfer, G.H., G.H. Synder, M. Ulloa, G. Powell, and L.E. Datnoff,
2001. Calibration of soil and plant silicon analysis for rice production.
J. Plant Nutr., 24:1071-1084.
[43] Malavolta, E. and D. Fornasieri Filho, 1983. Nutrição mineral da
cultura do arroz. In: FERREIRA, M.E.; YAMADA, T.;
MALAVOLTA, E. Cultura do arroz de sequeiro fatores afetando a
produtividade. Piracicaba: Instituto da Potassa & Fosfata, 95-143.
[44] Barbosa Filho, M.P., 1991. Adubação do arroz de sequeiro. Informe
Agropecuário, 14:32-38.
[45] Arf, O., 1993. Efeito de densidade populacional e adubação
nitrogenada sobre o comportamento de cultivares de arroz irrigado por
aspersão. Ilha Solteira: UNESP, 63. (Livre Docência).
[46] Carvalho, J.C., 2000. Análise de crescimento e produção de grãos da
cultura do arroz irrigado por aspersão em função da aplicação de
escórias de siderurgia como fonte de silício. Botucatu: UNESP/FCA,
119. (Dissertação - Mestrado).
[47] Barbosa Filho, M.P., 1987. Nutrição e adubação do arroz. Piracicaba:
Associação Brasileira para Pesquisa da Potassa e do Fosfato, 127.
[48] Exley, C., 1998. Silicon in life: a bioinorganic solution to bioorganic
essentiality. Journal of Inorganic Biochemistry, 69:139-144.
[49] Malavolta, E., G.S. Vitti and S.A. Oliveira, 1997 Avaliação do estado
nutricional das plantas: princ├¡pios e aplica├º├Áes. 2.ed. Piracicaba:
POTAFOS,. 319.
[50] Machado, J.R., 1994. Desenvolvimento da planta e produtividade de
gr├úos de popula├º├Áes de arroz (Oryza sativa l.) irrigado por inunda├º├úo
em fun├º├úo de épocas de cultivo. Botucatu: UNESP/FCA, 237 (Tese-
Livre Docência).
[51] Stone, L.F., P.M Silveira, J.A.A. Moreira, L.P. Yokoyama, 1999.
Adubação nitrogênada em arroz de sob irrigação suplementar por
aspersão. Pesquisa Agropecuária Brasileira, 34:929-932.
[52] Fallah, A., R. M. Visperas and A.A. Alejar, 2004. The interactive effect
of silicon and nitrogen on growth and spikelet filling in rice (Oryza
sativa L.) Philipp. Agric. Scientist, 87: 174-176.