Sediment Wave and Cyclic Steps as Mechanism for Sediment Transport in Submarine Canyons Thalweg

Seismic analysis of bedforms has proven to be one of the best ways to study deepwater sedimentary features. Canyons are known to be sediment transportation conduit. Sediment wave are large-scale depositional bedforms in various parts of the world's oceans formed predominantly by suspended load transport. These undulating objects usually have tens of meters to a few kilometers in wavelength and a height of several meters. Cyclic steps have long long-wave upstream-migrating bedforms confined by internal hydraulic jumps. They usually occur in regions with high gradients and slope breaks. Cyclic steps and migrating sediment waves are the most common bedform on the seafloor. Cyclic steps and related sediment wave bedforms are significant to the morpho-dynamic evolution of deep-water depositional systems architectural elements, especially those located along tectonically active margins with high gradients and slope breaks that can promote internal hydraulic jumps in turbidity currents. This report examined sedimentary activities and sediment transportation in submarine canyons and provided distinctive insight into factors that created a complex seabed canyon system in the Ceara Fortaleza basin Brazilian Equatorial Margin (BEM). The growing importance of cyclic steps made it imperative to understand the parameters leading to their formation, migration, and architecture as well as their controls on sediment transport in canyon thalweg. We extracted the parameters of the observed bedforms and evaluated the aspect ratio and asymmetricity. We developed a relationship between the hydraulic jump magnitude, depth of the hydraulic fall and the length of the cyclic step therein. It was understood that an increase in the height of the cyclic step increases the magnitude of the hydraulic jump and thereby increases the rate of deposition on the preceding stoss side. An increase in the length of the cyclic steps reduces the magnitude of the hydraulic jump and reduces the rate of deposition at the stoss side. Therefore, flat stoss side was noticed at most preceding cyclic step and sediment wave.




References:
[1] Shepard, F P, and R F Dill. 1969. “Physiography and Sedimentary Processes of La Jolla Submarine Fan and Fan-Valley , California â€TM La Jolla Submarine Fan and Fan-Valley , California Inadequacy of Piston and Gravity Coring in Penetrating Compacted Sands . After the Initiation of Box Coring (.” Ttie American Association of Petroleum Geologists Bulletin 2 (2).
[2] Normark, William R, and Paul R Carlson. 2003. “Giant Submarine Canyons: Is Size Any Clue to Their Importance in the Rock Record?” Geological Society of America, Special Paper 370, 1–15. doi:10.1130/0-8137-2370-1.175.
[3] Normark, William R, David J W Piper, Brian W Romans, and Jacob A Covault. 2009. “Submarine Canyon and Fan Systems of.” Earth Science in the Urban Ocean: The Southern California Continental Borderland: Geological Society of America Special Paper 454 2454: 141–68. doi:10.1130/2009.2454(2.7).
[4] Piper, D. J.W., and W. R. Normark. 2009. “Processes That Initiate Turbidity Currents and Their Influence on Turbidites: A Marine Geology Perspective.” Journal of Sedimentary Research 79 (6): 347–62. doi:10.2110/jsr.2009.046.
[5] Davies, Richard J., Kate E. Thatcher, Simon A. Mathias, and Jinxiu Yang. 2012. “Deepwater Canyons: An Escape Route for Methane Sealed by Methane Hydrate.” Elsevier Earth and Planetary Science Letters 323–324. Elsevier B.V.: 72–78. doi:10.1016/j.epsl.2011.11.007.
[6] Harris, Peter T, and Tanya Whiteway. 2011. “Global Distribution of Large Submarine Canyons : Geomorphic Differences between Active and Passive Continental Margins.” Marine Geology 285 (1–4). Elsevier B.V.: 69–86. doi:10.1016/j.margeo.2011.05.008.
[7] Huang, Zhi, Scott L Nichol, Peter T Harris, and M Julian Caley. 2014. “Classi Fi Cation of Submarine Canyons of the Australian Continental Margin.” Marine Geology 357. Elsevier B.V.: 362–83. doi:10.1016/j.margeo.2014.07.007.
[8] Goldfinger, C., Morey, A.E., Nelson, C.H., Gutie´ Rrez-Pastor, J., Johnson, J.E., Karabanov, E., Chaytor, J., Eriksson, A., And The Shipboard Scientific Party, 2007, Rupture lengths and temporal history of significant earthquakes on the offshore and north coast segments of the Northern San Andreas Fault based on turbidite stratigraphy: Earth and Planetary Science Letters, v. 254, p. 9–27
[9] McGregor, B.A., Stubblefield, W.L., Ryan, W.B.F., Twichell, D.C., 1982. Wilmington submarine canyon: a marine fluvial-like system. Geology 10, 27–30.
[10] Pratson, L.F., Ryan,W.B.F., 1996. Automated drainage extraction in mapping theMonterey Submarine Drainage System, California margin. Marine Geophysical Researches 18, 757–777.
[11] Micallef, A., Mountjoy, J.J., 2011. A topographic signature of a hydrodynamic origin for submarine gullies. Geology 39, 115–118.
[12] Field, M.E., Gardner, J.V., Prior, D.B., 1999. Geometry and significance of stacked gullies on the northern California slope. Marine Geology 154 (1), 271e286.
[13] Izumi, N., 2004, The formation of submarine gullies by turbidity currents: Journal of Geophysical Research, v. 109, doi: 10.1029/2003JC001898.
[14] Chiocci, F.L., Casalbore, D., 2011. Submarine gullies on Italian upper slopes and their rela- tionship with volcanic activity revisited 20 years after Bill Normark's pioneering work. Geosphere 7:1–11. http://dx.doi.org/10.1130/GES00633.
[15] Mountjoy, J.J., Barnes, P.M., Pettinga, J.R., 2009. Morphostructure and evolution ofsubma- rine canyons across an active margin: Cook Strait sector of the Hikurangi Margin, New Zealand. Marine Geology 260, 45–68.
[16] Puga-Bernabeu, A.,Webster, J.M., Beaman, R.J., Guilbaud, V., 2011. Morphology and controls on the evolution of a mixed carbonate-siliciclastic submarine canyon system, Great Barrier Reef margin, north-eastern Australia. Marine Geology 289, 100–116.
[17] Almeida, Narelle Maia de, Helenice Vital, and Moab Praxedes Gomes. 2015. “Morphology of Submarine Canyons along the Continental Margin of the Potiguar Basin, NE Brazil.” Marine and Petroleum Geology 68. Elsevier Ltd: 307–24. doi:10.1016/j.marpetgeo.2015.08.035.
[18] Puig, Pere, Ruth Durán, Araceli Muñoz, Elena Elvira, and Jorge Guillén. 2017. “Submarine Canyon-Head Morphologies and Inferred Sediment Transport Processes in the Alías-Almanzora Canyon System ( SW Mediterranean ): On the Role of the Sediment Supply.” Marine Geology 393. Elsevier B.V.: 21–34. doi:10.1016/j.margeo.2017.02.009.
[19] Pratson, L.F., Nittrouer, C.A., Wiberg, P.L., Steckler, M.S., Cacchione, D.A., Fulthorpe, C.S., Driscoll, N.W., Paola, C., Fedeles, J.J., 2007. Seascape evolution on clastic continental shelves and slopes. In: Nitrouer, C.A., Austin, J.A., Field, M.E., Kravitz, J.H., Syvitski, J.P.M., Wiberg, P.L. (Eds.), Continental-Margin Sedimen- tation: from Sediment Transport to Sequence Stratigraphy, IAP Special Publi- cation 37. Blackwell Publishing, Oxford, pp. 339e380.
[20] Skene, K.I.,Piper, D.J.W., 2006. Late Cenozoic evolution ofLaurentian Fan: development of a glacially-fed submarine fan. Marine Geology 227, 67–92.
[21] Bourget, J., Zaragosi, S., Garlan, T., Gabelotaud, I., Guyomard, P., Dennielou, B., Ellouz- Zimmermann, N., Schneider, J.L., 2008. Discovery of a giant deep-sea valley in the Indian Ocean, off eastern Africa: the Tanzania channel. Marine Geology 255 (3–4), 179–185.
[22] Normark, W. R., J. G. Moore, and M. E. Torresan, Giant volcano-related landslides and the development of the Hawaiian Islands, in Submarine Landslides: Selected Studies in the U.S. Exclusive Economic Zone, edited by W. C. Schwab H. J. Lee, and D.C. Twichell, U.S. Geol. Surv. Bull., 2002, 184-196, 1993.
[23] Covault, Jacob A., Svetlana Kostic, Charles K. Paull, Zoltán Sylvester, and Andrea Fildani. 2017. “Cyclic Steps and Related Supercritical Bedforms: Building Blocks of Deep-Water Depositional Systems, Western North America.” Marine Geology 393. Elsevier B.V.: 4–20. doi:10.1016/j.margeo.2016.12.009.
[24] Casalbore, Daniele, Domenico Ridente, Alessandro Bosman, and Francesco L. Chiocci. 2017. “Depositional and Erosional Bedforms in Late Pleistocene-Holocene pro-Delta Deposits of the Gulf of Patti (Southern Tyrrhenian Margin, Italy).” Marine Geology 385. Elsevier B.V.: 216–27. doi:10.1016/j.margeo.2017.01.007.
[25] Wynn, Russell B., Neil H. Kenyon, Douglas G. Masson, Dorrik A.V. Stow, and Philip P.E. Weaver. 2002. “Characterization and Recognition of Deep-Water Channel-Lobe Transition Zones.” AAPG Bulletin 86 (8): 1441–62. doi:10.1306/61eedcc4-173e-11d7-8645000102c1865d.
[26] Gong, Chenglin, Yingmin Wang, Xuechao Peng, Weiguo Li, Yan Qiu, and Shang Xu. 2012. “Sediment Waves on the South China Sea Slope off Southwestern Taiwan: Implications for the Intrusion of the Northern Pacific Deep Water into the South China Sea.” Marine and Petroleum Geology 32 (1). Elsevier Ltd: 95–109. doi:10.1016/j.marpetgeo.2011.12.005.
[27] Dyer, K. R., & Huntley, D. A. (1999). The origin, classification and modelling of sand banks and ridges. Continental ShelfResearch, 19 (10), 1285-1330
[28] Belderson, R. H. (1986). Offshore tidal and non-tidal sand ridges and sheets: differences in morphology and hydrodynamic setting. In R. J. Knight & J. R. McLean (Eds.), Shelf Sands and Sandstones (pp. 293-301). Can. Soc. Petr. Geol.
[29] Guillén, Jorge. 2017. Atlas of Bedforms in the Western Mediterranean. doi:10.1007/978-3-319-33940-5.
[30] van Dijk TA, Kleinhans MG (2005) Processes controlling the dynamics of compound sand waves in the North Sea, Netherlands. J Geophys Res Earth 110(F4).
[31] Fildani, A., Normark, W.R., Kostic, S. and Parker, G. (2006) Channel formation by flow stripping: large-scale scour features along the Monterey East Channel and their relation to sediment waves. Sedimentology, 53, 1265–1287.
[32] Kostic, S. 2011. “Modeling of Submarine Cyclic Steps: Controls on Their Formation, Migration, and Architecture.” Geosphere 7 (2): 294–304. doi:10.1130/GES00601.1.
[33] Cartigny, Matthieu J.B., George Postma, Jan H. van den Berg, and Dick R. Mastbergen. 2011. “A Comparative Study of Sediment Waves and Cyclic Steps Based on Geometries, Internal Structures and Numerical Modeling.” Marine Geology 280 (1–4). Elsevier B.V.: 40–56. doi:10.1016/j.margeo.2010.11.006.
[34] Hamilton PB, Strom KB, Hoyal DCJD (2015) Hydraulic and sediment transport properties of autogenic avulsion cycles on submarine fans with supercritical distributaries. J Geophys Res doi:10.1002/2014JF003414, in press
[35] Wynn, R B, P P E Weaver, G Ercilla, D a V Stow, and D G Masson. 2000. “Sedimentary Processes in the Selvage Sediment-Wave ¢eld.” NE Atlantic 47: 1181^1197.
[36] Migeon, S., B. Savoye, E. Zanella, T. Mulder, J. C. Faugères, and O. Weber. 2001. “Detailed Seismic-Reflection and Sedimentary Study of Turbidite Sediment Waves on the Var Sedimentary Ridge (SE France): Significance for Sediment Transport and Deposition and for the Mechanisms of Sediment-Wave Construction.” Marine and Petroleum Geology 18 (2): 179–208. doi:10.1016/S0264-8172(00)00060-X.
[37] Normark, William R., David J.W. Piper, Henry Posamentier, Carlos Pirmez, and Sébastien Migeon. 2002. Variability in Form and Growth of Sediment Waves on Turbidite Channel Levees. Marine Geology. Vol. 192. doi:10.1016/S0025-3227(02)00548-0.
[38] Wynn, Russell B., David J.W. Piper, and Martin J.R. Gee. 2002. “Generation and Migration of Coarse-Grained Sediment Waves in Turbidity Current Channels and Channel-Lobe Transition Zones.” Marine Geology 192 (1–3): 59–78. doi:10.1016/S0025-3227(02)00549-2.
[39] Ediger, V., A. F. Velegrakis, and G. Evans. 2002. “Upper Slope Sediment Waves in the Cilician Basin, Northeastern Mediterranean.” Marine Geology 192 (1–3): 321–33. doi:10.1016/S0025-3227(02)00562-5.
[40] Ã, Roger D Flood, and Liviu Giosan. 2002. “12p_Reiner Anderl.pdf” 192: 259–73.
[41] HILL, P.R., 2012, Changes in submarine channel morphology and slope sedimentation patterns from repeat multibeam surveys in the Fraser River delta, western Canada, in Li, M.Z., Sherwood, C.R., and Hill, P.R., eds., Sediments, Morphology and Sedimentary Processes on Continental Shelves: Advances in Technologies, Research and Applications: International Association of Sedimentologists, Special Publication 44, p. 47–70
[42] Arzola, R.G., Wynn, R.B., Lastras, G., Masson, D.G., and Weaver, P.P.E., 2008, Sedimentary features and pro- cesses in the Nazare and Setubal submarine canyons, west Iberian margin: Marine Geology, v. 250, p. 64-88.
[43] Wright, I.C., Worthington, T.J., Gamble, J.A., 2006. New multibeam mapping and geochemistry of the 30–35 S sector, and overview, of southern Kermadec arc volcanism. J. Volcanol. Geotherm. Res. 149, 263–296.
[44] Cattaneo, A., Correggiari, A., Marsset, T., Thomas, Y., Marsset, B., Trincardi, F. (2004). Seafloor undulation pattern on the Adriatic shelf and comparison to deep-water sediment waves. Mar. Geol. 213, 121–148. doi:10.1016/j.margeo.2004.10.004
[45] Symons, William O., Esther J. Sumner, Peter J. Talling, Matthieu J.B. Cartigny, and Michael A. Clare. 2016. “Large-Scale Sediment Waves and Scours on the Modern Seafloor and Their Implications for the Prevalence of Supercritical Flows.” Marine Geology 371. Elsevier B.V.: 130–48. doi:10.1016/j.margeo.2015.11.009.
[46] Piper, D.J.W., Normark, W.D., 1983. Turbidite depositional patterns and flow characteristics, Navy submarine fan, California borderland. Sedimentology 30, 681–694.
[47] Mutti E, Normark WR (1987) Comparing examples of modern and ancient turbidite systems: problems and concepts. In: Leggett JK, Zuffa GG (eds) Marine clastic sedimentology: concepts and case studies. Graham and Trotman, London, pp 1–38
[48] Cartigny, M.J.B., Postma, G., van den Berg, J.H., Mastbergen, D.R., 2011. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling. Mar. Geol. 280, 40–56. Kostic
[49] Zhong, Guangfa, Matthieu J.B. Cartigny, Zenggui Kuang, and Liaoliang Wang. 2015. “Cyclic Steps along the South Taiwan Shoal and West Penghu Submarine Canyons on the Northeastern Continental Slope of the South China Sea.” Bulletin of the Geological Society of America 127 (5–6): 804–24. doi:10.1130/B31003.1.
[50] Winterwerp, J.C., Bakker, W.T., Mastbergen, D.R., Van Rossum, H., 1992. Hyperconcen- trated sand–water mixture flows over erodible bed. Journal of Hydraulic Engineering 118 (11), 1508–1525.
[51] Taki, K., and Parker, G., 2005, Transportational cyclic steps created by fl ow over an erodible bed, Part 1, Theory and numerical simulation: Journal of Hydraulic Research, v. 43, p. 488–501, doi: 10.1080/00221680509500147.
[52] Van Den Berg, J.H., Vangelder,A., And Mastbergen, D.R., 2002, The importance of breaching as a mechanism of subaqueous slope failure in fine sand: Sedimentology, v. 49, p. 81–95.
[53] Talling, P. J., J. Allin, D. A. Armitage, R. W. C. Arnott, M. J. B. Cartigny, M. A. Clare, F. Felletti, et al. 2015. “Key Future Directions For Research On Turbidity Currents and Their Deposits.” Journal of Sedimentary Research 85 (2): 153–69. doi:10.2110/jsr.2015.03.
[54] Yokokawa, M., Okuno, K., Nakamura, A., Muto, T., Miyata, Y., Naruse, H., 2009. Aggradational cyclic steps: sedimentary structures found in flume experiments. Proceedings 33rd IAHR Congress Vancouver.
[55] Fagherazzi, S., and Sun, T., 2003, Numerical simulations of transportational cyclic steps. Computers & Geosci- ences, v. 29, p. 1143–1154, doi: 10 .1016 /S0098 -3004 (03)00133 -X .par
[56] Sun,T., and Parker, G., 2005, Transportational cyclic steps created by flow over an erodible bed. Part 2. Theory and numerical simulation: Journal of Hydraulic Research, v. 43, p. 502–514
[57] Normark, W.R., Piper, D.J.W., Posamentier, H., Pirmez, C., Migeon, S., 2002. Variability in form and growth of sediment waves on turbidite channel levees. Mar. Geol. 192, 23–58.
[58] Ercilla, Gemma, Belén Alonso, Russell B. Wynn, and Jesús Baraza. 2002. “Turbidity Current Sediment Waves on Irregular Slopes: Observations from the Orinoco Sediment-Wave Field.” Marine Geology 192 (1–3): 171–87. doi:10.1016/S0025-3227(02)00554-6.
[59] Lastras, G., Acosta, J., Mu~noz, A., Canals, M., 2011. Submarine canyon formation and evolution in the Argentine Continental Margin between 44?30'S and 48?S. Geomorphology 128 (3e4), 116e136
[60] Lo Iacono, C., Sulli, A., Agate, M., 2014. Submarine canyons of north-western Sicily (Southern Tyrrhenian Sea): variability in morphology, sedimentary processes and evolution on a tectonically active margin. Deep Sea Res. II 104, 93e105.
[61] Micallef, A., Mountjoy, J.J., Barnes, P.M., Canals, M., Lastras, G., 2014. Geomorphic response of submarine canyons to tectonic activity: insights from the Cook Strait canyon sys- tem, New Zealand. Geosphere 10, 905–929.
[62] Bastos, Ildeson Prates. 2000. “Ceara Basin,” no. Gouyet 1988: 2000.
[63] Jovane, Luigi, Jorge J. P. Figueiredo, Daniel P. V. Alves, David Iacopini, Martino Giorgioni, Paola Vannucchi, Denise S. Moura, et al. 2016. “Seismostratigraphy of the Ceará Plateau: Clues to Decipher the Cenozoic Evolution of Brazilian Equatorial Margin.” Frontiers in Earth Science 4 (October): 1–14. doi:10.3389/feart.2016.00090.
[64] Golonka, Jan, Robert Pauken Ñ Mobil, and New Exploration. 2015. “Phanerozoic Paleoenvironment and Lithofacies Maps of the Circum- Atlantic Margins,” no. January 1998: 432–33.
[65] CLARK, Ian R., and JOSEPH A. Cartwright. 2012. “Interactions between Coeval Sedimentation and Deformation from the Niger Delta Deepwater Fold Belt.” SEPM Special Publication, no. 99: 243–67. doi:10.2110/pec.12.99.0243.
[66] Burke, K, TFJ Dessauvagie, and AJ Whiteman. 1971. “Opening of the Gulf of Guinea and Geological History of the Benue Depression and Niger Delta.” Nature 233: 51–55. doi:doi:10.1038/physci233051a0.
[67] Fairhead, J. D., and R. M. Binks. 1991. “Differential Opening of the Central and South Atlantic Oceans and the Opening of the West African Rift System.” Tectonophysics 187 (1–3): 191–203. doi:10.1016/0040-1951(91)90419-S.
[68] Jolly, Byami A., Lidia Lonergan, and Alexander C. Whittaker. 2016. “Growth History of Fault-Related Folds and Interaction with Seabed Channels in the Toe-Thrust Region of the Deep-Water Niger Delta.” Marine and Petroleum Geology 70. Elsevier Ltd: 58–76. doi:10.1016/j.marpetgeo.2015.11.003.
[69] Maestrelli, D, D Iacopini, V Maselli, N Scarselli, P Vannucchi, L Jovane, and B Kneller. 2018. “Submarine Depression Trails Driven by the Interplay of Density Currents and Fluid Migration .,” no. July.
[70] Matos, R.M.D., 1999. History of the northeast Brazilian rift system: kinematics im- plications for the break-up between Brazil and West Africa. In: Cameron, N.R., Bate, R.H., Clure, V.S. (Eds.), The Oil and Gas Habitats of the South Atlantic, Geological Society, London, Special Publications, 155, pp. 55e73.
[71] Bertani, R.T., Costa, L.G., Matos, R.M.D., 1990. Tectonic-sedimentary evolution, structural style and oil habitat in the Potiguar Basin. In: Raja Gabaglia, G.P., Milani, E.J. (Eds.), Origin and Evolution of Sedimentary Basins. Petrobras, Rio de Janeiro, pp. 291e310 (in Portuguese)
[72] Maselli, B. Kneller, O.L. Taiwo, D. Iacopinib V. 2019. “Sea Floor Bedforms and Their Influence on Slope Accommodation.” Marine and Petroleum Geology 102 (2019) 625–637 Contents 102: 625–37. doi:10.31223/osf.io/ph6fm.
[73] Normandeau, Alexandre, Patrick Lajeunesse, Antoine G. Poiré, and Pierre Francus. 2016. “Morphological Expression of Bedforms Formed by Supercritical Sediment Density Flows on Four Fjord-Lake Deltas of the South-Eastern Canadian Shield (Eastern Canada).” Sedimentology 63 (7): 2106–29. doi:10.1111/sed.12298.
[74] Masson, DG, TP Le Bas, B J Bett, V Huhnerbach, CL Jacobs, and R B Wynn. 2003. “Seafloor Sediments and Sedimentary Processes on the Outer Continental Shelf, Continental Slope and Basin Floor.” Strategic Environmental Assessment: SEA 4. Consultation Document, no. 4: 51pp.
[75] Guillén, Jorge. 2017. Atlas of Bedforms in the Western Mediterranean. doi:10.1007/978-3-319-33940-5.
[76] Tubau, Xavier, Charles K Paull, Galderic Lastras, David W Caress, Miquel Canals, Eve Lundsten, Krystle Anderson, Roberto Gwiazda, and David Amblas. 2015. “Submarine Canyons of Santa Monica Bay , Southern California : Variability in Morphology and Sedimentary Processes.” Marine Geology 365. Elsevier B.V.: 61–79. doi:10.1016/j.margeo.2015.04.004.
[77] Kneller, Ben, Mason Dykstra, Luke Fairweather, and Juan Pablo Milana. 2016. “Mass-Transport and Slope Accommodation: Implications for Turbidite Sandstone Reservoirs.” AAPG Bulletin 100 (2): 213–35. doi:10.1306/09011514210.
[78] Jobe, Zane R, Donald R Lowe, and Steven J Uchytil. 2011. “Two Fundamentally Different Types of Submarine Canyons along the Continental Margin of Equatorial Guinea.” Marine and Petroleum Geology 28 (3). Elsevier Ltd: 843–60.
[79] Maier, Katherine L., Daniel S. Brothers, Charles K. Paull, Mary McGann, David W. Caress, and James E. Conrad. 2017. “Records of Continental Slope Sediment Flow Morphodynamic Responses to Gradient and Active Faulting from Integrated AUV and ROV Data, Offshore Palos Verdes, Southern California Borderland.” Marine Geology 393. Elsevier B.V.: 47–66.
[80] Posamentier, Henry W., and Venkatarathnan Kolla. 2003. “Seismic Geomorphology and Stratigraphy of Depositional Elements in Deep-Water Settings.” Journal of Sedimentary Research 73 (3): 367–88. doi:10.1306/111302730367.
[81] Paull, C. K., W. Ussler III, D. W. Caress, E. Lundsten, J. A. Covault, K. L. Maier, J. Xu, and S. Augenstein. 2010. “Origins of Large Crescent-Shaped Bedforms within the Axial Channel of Monterey Canyon, Offshore California.” Geosphere 6 (6): 755–74. doi:10.1130/GES00527.1.
[82] Smith, D.P., Kvitek, R., Iampietro, P.J., Wong, K., 2007. Twenty-ninemonths ofgeomorphic change in upper Monterey Canyon (2002–2005). Mar. Geol. 236, 79–94.
[83] Postma, George, Kick Kleverlaan, and Matthieu J.B. Cartigny. 2014. “Recognition of Cyclic Steps in Sandy and Gravelly Turbidite Sequences, and Consequences for the Bouma Facies Model.” Sedimentology 61 (7): 2268–90. doi:10.1111/sed.12135.
[84] Sequeiros, Octavio E. 2012. “Estimating Turbidity Current Conditions from Channel Morphology: A Froude Number Approach.” Psychological Reports 117 (3 Pt 2): 819–22. doi:10.1029/2011JC007201.
[85] Postma, G., Cartigny, M.J.B., Kleverlaan, K., 2009. Structureless, coarse-tail graded bouma Ta formed by internal hydraulic jump of the turbidity current? Sediment. Geol. 219, 1–6.
[86] Covault, Jacob A., Svetlana Kostic, Charles K. Paull, Holly F. Ryan, and Andrea Fildani. 2014. “Submarine Channel Initiation, Filling and Maintenance from Sea-Floor Geomorphology and Morphodynamic Modelling of Cyclic Steps.” Sedimentology 61 (4): 1031–54. doi:10.1111/sed.12084.
[87] Einsele, Gerhard. 1992. Gerhard Einsele. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest. doi:Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest.
[88] Xu, J.P., Wong, F.L., Kvitek, R., Smith, D.P. and Paull, C.K. (2008) Sandwave migration in Monterey Submarine Canyon, Central California. Mar. Geol., 248, 193–212.
[89] Rahman, Syed Mustafizur, M Rezaul Islam, and Mumnunul Keramat. 2008. “Seismic Imaging by Impulse Response for Studying Crustal Structure of the Central Tibet.” Journal of Scientific Research 1 (1): 61–71. doi:10.3329/jsr.v1i1.1082.
[90] Frey-Martinez, J. 2010. “3D Seismic Interpretation of Mass Transport Deposits : Implications for Basin Analysis and Geohazard Evaluation.” Advances in Natural and Technological Hazards Research, Vol 28, © Springer Science + Business Media B.V. 2010 28.
[91] Geoffroy, Lamarche Joanne, Cathy, and Jean-yves Collot. 2008. “Successive, Large Mass-Transport Deposits in the South Kermadec Fore-Arc Basin, New Zealand: The Matakaoa Submarine Instability Complex,” no. 4219. doi:10.1029/2007GC001843.
[92] Kastens, K.A., Shor, A.N., 1985. Depositional processes of a meandering channel on Mississippi fan. AAPG Bulletin 69, 190–202.
[93] Schwab, A.M., Tremblay, S. and Hurst, A., 2007. Seismic expression of turbidity‐current and bottom‐current processes on the Northern Mauritanian continental slope. In: R.J. Davies, H. Posamentier, L. Wood and J. Cartwright (Eds.), Seismic Geomorphology. Geological Society of London, Special Publications, 277, pp. 237‐252.