Practical Evaluation of High-Efficiency Si-Based Tandem Solar Cells

Si-based double-junction tandem solar cells have become a popular research topic because of the advantages of low manufacturing cost and high energy conversion efficiency. However, there is no set of calculations to select the appropriate top cell materials. Therefore, this paper will propose a simple but practical selection method. First of all, we calculate the S-Q limit and explain the reasons for developing tandem solar cells. Secondly, we calculate the theoretical energy conversion efficiency of the double-junction tandem solar cells while combining the commercial monocrystalline Si and materials' practical efficiency to consider the actual situation. Finally, we conservatively conclude that if considering 75% performance of the theoretical energy conversion efficiency of the top cell, the suitable bandgap energy range will fall between 1.38 eV to 2.5 eV. Besides, we also briefly describe some improvements of several proper materials, CZTS, CdSe, Cu2O, ZnTe, and CdS, hoping that future research can select and manufacture high-efficiency Si-based tandem solar cells based on this paper successfully. Most importantly, our calculation method is not limited to silicon solely. If other materials’ performances match or surpass silicon's ability in the future, researchers can also apply this set of deduction processes.





References:
[1] Shockley, W., Queisser, H.J., 1961. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519. https://doi.org/10.1063/1.1736034
[2] Green, M., Dunlop, E., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., Hao, X., 2021. Solar cell efficiency tables (version 57). Prog. Photovoltaics Res. Appl. 29, 3–15. https://doi.org/10.1002/pip.3371
[3] Nelson, J., 2003. The Physics of Solar Cells, The Physics of Solar Cells. Published by Imperial College Press and Distributed by World Scientific Publishing CO. https://doi.org/ 10.1142/p276
[4] De Vos, A., 1980. Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D. Appl. Phys. 13, 839–846. https://doi.org/10.1088/0022-3727/13/5/018
[5] Yamaguchi, M., Lee, K.H., Araki, K., Kojima, N., 2018. A review of recent progress in heterogeneous silicon tandem solar cells. J. Phys. D. Appl. Phys. https://doi.org/10.1088/1361-6463/aaaf08
[6] Lu, S., Chen, C., Tang, J., 2020. Possible top cells for next-generation Si-based tandem solar cells. Front. Optoelectron. https://doi.org/ 10.1007/s12200-020-1050-y
[7] Smestad, G., Ries, H., 1992. Luminescence and current-voltage characteristics of solar cells and optoelectronic devices. Sol. Energy Mater. Sol. Cells 25, 51–71. https://doi.org/10.1016/0927-0248(92)90016-I
[8] Green, M.A., 1982. Operating Principles, Technology and System Applications Paperback. United States. https://doi.org/10.2172/1644255
[9] Singh, P., Ravindra, N.M., 2012. Temperature dependence of solar cell performance - An analysis. Sol. Energy Mater. Sol. Cells 101, 36–45. https://doi.org/10.1016/j.solmat.2012.02.019
[10] Rühle, S., 2016. Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol. Energy 130, 139–147. https://doi.org/10.1016/j.solener.2016.02.015
[11] Polman, A., Knight, M., Garnett, E.C., Ehrler, B., Sinke, W.C., 2016. Photovoltaic materials: Present efficiencies and future challenges. Science (80-. ). https://doi.org/10.1126/science.aad4424
[12] Ehrler, B., Alarcón-Lladó, E., Tabernig, S.W., Veeken, T., Garnett, E.C., Polman, A., 2020. Photovoltaics reaching for the shockley-queisser limit. ACS Energy Lett. 5, 3029–3033. https://doi.org/10.1021/acsenergy lett.0c01790
[13] Bremner, S.P., Levy, M.Y., Honsberg, C.B., 2008. Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Prog. Photovoltaics Res. Appl. 16, 225–233. https://doi.org/10.1002/pip.799
[14] S.G.Bowden, C.B.Honsberg, 2019. Tandem Cells | PVEducation (WWW Document) URL https://www.pveducation.org/pvcdrom/tandem-cells (accessed 9.1.21).
[15] Li, Z., Xiao, H., Wang, X., Wang, C., Deng, Q., Jing, L., Ding, J., Hou, X., 2013. Theoretical simulations of InGaN/Si mechanically stacked two-junction solar cell. Phys. B Condens. Matter 414, 110–114. https://doi.org/10.1016/j.physb.2013.01.026
[16] Rickus, E., 1982. Photovoltaic Behaviour of CdSe Thin Film Solar Cells, in: Commission of the European Communities, (Report) EUR. Springer, Dordrecht, pp. 831–883. https://doi.org/10.1007/ 978-94-009-7898-0_139
[17] Mahawela, P., Jeedigunta, S., Vakkalanka, S., Ferekides, C.S., Morel, D.L., 2005. Transparent high-performance CDSE thin-film solar cells, in: Thin Solid Films. Elsevier, pp. 466–470. https://doi.org/10.1016/ j.tsf.2004.11.066
[18] Patel, S.L., Himanshu, Chander, S., Purohit, A., Kannan, M.D., Dhaka, M.S., 2019. Understanding the physical properties of CdCl2 treated thin CdSe films for solar cell applications. Opt. Mater. (Amst). 89, 42–47. https://doi.org/10.1016/j.optmat.2019.01.001
[19] Miyata, T., Tanaka, H., Sato, H., Minami, T., 2006. P-type semiconducting Cu2O-NiO thin films prepared by magnetron sputtering. J. Mater. Sci. 41, 5531–5537. https://doi.org/10.1007/s10853-006-0271-9
[20] Cui, J., Gibson, U.J., 2010. A simple two-step electrodeposition of Cu2O/ZnO Nanopillar solar cells. J. Phys. Chem. C 114, 6408–6412. https://doi.org/10.1021/jp1004314
[21] Minami, T., Nishi, Y., Miyata, T., 2016. Efficiency enhancement using a Zn1-xGex-O thin film as an n-type window layer in Cu2O-based heterojunction solar cells. Appl. Phys. Express 9, 052301. https://doi.org/10.7567/APEX.9.052301
[22] Zang, Z., 2018. Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films. Appl. Phys. Lett. 112, 042106. https://doi.org/10.1063/1.5017002
[23] Wolden, C.A., Abbas, A., Li, J., Diercks, D.R., Meysing, D.M., Ohno, T.R., Beach, J.D., Barnes, T.M., Walls, J.M., 2016. The roles of ZnTe buffer layers on CdTe solar cell performance. Sol. Energy Mater. Sol. Cells 147, 203–210. https://doi.org/10.1016/j.solmat.2015.12.019
[24] Tanaka, T., Yu, K.M., Stone, P.R., Beeman, J.W., Dubon, O.D., Reichertz, L.A., Kao, V.M., Nishio, M., Walukiewicz, W., 2010. Demonstration of homojunction ZnTe solar cells. J. Appl. Phys. 108, 024502. https://doi.org/10.1063/1.3463421
[25] Lee, K.S., Oh, G., Chu, D., Pak, S.W., Kim, E.K., 2017. High power conversion efficiency of intermediate band photovoltaic solar cell based on Cr-doped ZnTe. Sol. Energy Mater. Sol. Cells 170, 27–32. https://doi.org/10.1016/j.solmat.2017.05.020
[26] Dey, Mrinmoy, Asha, I.A., Smita, Z.T., Dey, Maitry, Das, N.K., 2019. Highly efficient ZnTe solar cell with PbTe BSF, in: 2019 5th International Conference on Advances in Electrical Engineering, ICAEE 2019. Institute of Electrical and Electronics Engineers Inc., pp. 613–616. https://doi.org/10.1109/ICAEE48663.2019.8975498
[27] Shitaya, T., Sato, H., 1968. Single Crystal CdS Solar Cell. Jpn. J. Appl. Phys. 7, 1348–1353. https://doi.org/10.1143/jjap.7.1348
[28] Britt, J., Ferekides, C., 1993. Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 62, 2851–2852. https://doi.org/10.1063/ 1.109629
[29] Lin, C.-C., Chen, H.-C., Tsai, Y.L., Han, H.-V., Shih, H.-S., Chang, Y.-A., Kuo, H.-C., Yu, P., 2012. Highly efficient CdS-quantum-dot-sensitized GaAs solar cells. Opt. Express 20, A319. https://doi.org/10.1364/oe.20.00a319
[30] Deng, Y., Yang, J., Yang, R., Shen, K., Wang, Dezhao, Wang, Deliang, 2016. Cu-doped CdS and its application in CdTe thin film solar cell. AIP Adv. 6, 015203. https://doi.org/10.1063/1.4939817
[31] Arora, H., Erbe, A., 2021. Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe. InfoMat 3, 662–693. https://doi.org/10.1002/inf2.12160
[32] Burton, L.A., Whittles, T.J., Hesp, D., Linhart, W.M., Skelton, J.M., Hou, B., Webster, R.F., O’Dowd, G., Reece, C., Cherns, D., Fermin, D.J., Veal, T.D., Dhanak, V.R., Walsh, A., 2016. Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst. J. Mater. Chem. A 4, 1312–1318. https://doi.org/10.1039/C5TA08214E
[33] DeAngelis, A.D., Kemp, K.C., Gaillard, N., Kim, K.S., 2016. Antimony(III) Sulfide Thin Films as a Photoanode Material in Photocatalytic Water Splitting. ACS Appl. Mater. Interfaces 8, 8445–8451. https://doi.org/10.1021/acsami.5b12178
[34] Kasap, S., Capper, P. (Eds.), 2007. Springer Handbook of Electronic and Photonic Materials, Springer Handbook of Electronic and Photonic Materials, Springer Handbooks. Springer International Publishing, Cham. https://doi.org/10.1007/978-0-387-29185-7
[35] Madelung, O., Rössler, U., Schulz, M. (Eds.), n.d. Cuprous oxide (Cu2O) band structure, band energies: Datasheet from Landolt-Börnstein - Group III Condensed Matter ·Volume 41C: ``Non-Tetrahedrally Bonded Elements and Binary Compounds I’’ in SpringerMaterials (https://doi.org/10.1007/10681727{\_}62). https://doi.org/10.1007/10681727_62
[36] Malerba, C., Biccari, F., Ricardo, C.L.A., Valentini, M., Chierchia, R., Müller, M., Santoni, A., Esposito, E., Mangiapane, P., Scardi, P., Mittiga, A., 2014. CZTS stoichiometry effects on the band gap energy. J. Alloys Compd. 582, 528–534. https://doi.org/10.1016/j.jallcom.2013.07.199
[37] Rahman, I.A., Purqon, A., 2017. First Principles Study of Molybdenum Disulfide Electronic Structure, in: Journal of Physics: Conference Series. IOP Publishing, p. 012026. https://doi.org/10.1088/1742-6596/877/1/012026
[38] NREL, n.d. Reference Air Mass 1.5 Spectra | Grid Modernization | NREL (WWW Document). ASTM G-173-03. URL https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html (accessed 9.1.21).