Parametric Studies of Wood Pyrolysis Particles

In the present study, a numerical approach to describe the pyrolysis of a single solid particle of wood is used to study the influence of various conditions such as particle size, heat transfer coefficient, reactor temperature and heating rate. The influence of these parameters in the change of the duration of the pyrolysis cycle was studied. Mathematical modeling was employed to simulate the heat, mass transfer, and kinetic processes inside the reactor. The evolutions of the mass loss as well as the evolution of temperature inside the thick piece are investigated numerically. The elaborated model was also employed to study the effect of the reactor temperature and the rate of heating on the change of the temperature and the local loss of the mass inside the piece of wood. The obtained results are in good agreement with the experimental data available in the literature.





References:
[1] D. A. Bulushev, J. R. H. Rossa., catalyse pour la conversion de la biomasse en carburants par l'intermédiaire de pyrolyse et de gazéification: une revue, Catal. Aujourd'hui 2010; 171: 1-13.
[2] K.H. Kim, I.Y. Eom, S.M. Lee, D. Choi, H. Yeo, I.G. Choi, J.W. Choi, recherche sur les propriétés physico-chimiques de bio-bio-oils produites à partir du bois de peuplier jaune (tulipifera de Liriodendron) aux diverses températures et temps de séjour. J. anal. APPL. Pyrol. 2011; 92: 2-9.
[3] C. Di Blasi, Heat, momentum and mass transport through a shrinking biomass particle exposed to thermal radiation. Chem. Eng. Sci. 1996; 51: 1121-1132.
[4] B. V. Babu, A. S. Chaurasia, Modeling for pyrolysis of solid particle: Kinetics and heat transfer effects. Energ. Convers. Manage. 2003; 44: 2251-2275.
[5] K. Papadikis, S. Gu, A. V. Bridgwater, CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B. Heat, momentum and mass transport in bubbling fluidised beds. Chem. Eng. Sci. 2009; 64: 1036-1045.
[6] A. K. Sadhukhan, P. Gupta, R. K. Saha, Modelling of pyrolysis of large wood particles. Bioresource Technol. 2009; 100: 3134-3139.
[7] Y. Haseli, J. A. Van Oijen, L. P. H. De Goey, modeling biomass particle pyrolysis with temperature-dependent heat of reactions. J. Anal. Appl. Pyrol. 2011; 90: 140-154.
[8] J. Larfeldt, B. Leckner, M. C. Melaaen, modelling and measurements of the pyrolysis of large wood particles. Fuel, 2000; 79: 1637-1643.
[9] A. K. Sadhukhan, P. Gupta, R. K. Saha, modelling and experimental studies on pyrolysis of biomass particles. J. Anal. Appl. Pyrol. 2008; 81: 183-192.
[10] C. A. Koufopanos, N. Papayannakos, G. Maschio, A. Lucchesi, modelling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects. Can. J. Chem. Eng. 1991; 69:907-915.
[11] C. H Bamford, J. Crank, D. H Malan, The combustion of wood Part 1. Droc. Of the Cambridge Philosophical Society. 1946; 42: 116-182.
[12] H. C. Kung, A Mathematical Model of Wood Pyrolysis. Combustion and Flame. 1972; 18: 185-195.
[13] D. L. Pyle, C. A. Zaror, Heat transfer and kinetics in the low temperature pyrolysis of solids. Chemicals Engineering Science. 1984; 39:147-158.
[14] CA. Koufopanos, N. Papayannakos, G. Maschio, and Lucchesi, Modeling of the pyrolysis of biomass partic les: Studies on kinetics, thermal and heat transfer effects. Canada in a Journal of Chemical Engineering. 1991; 69:907–15.
[15] C. Di Blasi, C. Branca, A. Santoro, E.G. Hernandez. Comb. Flame. 2001; 124:165.
[16] Di Blasi C, Russo G. In: Bridgwater AV, editor. Proc advances in thermochemical biomass conversion. Glasgow, UK: Blackie Academic & Professional Publishers. 1994: 21-906.
[17] C. Di Blasi. In: Bridgwater AV, Boocock DGB, editors. Proc developments in thermochemical biomass conversion. Glasgow, UK: Blackie Academic & Professional Pub.1997 60-147.
[18] N. Grioui, K. Halouani, A. Zoulalian, F. Halouani, Thermogravimetric analysis and kinetics modelling on isothermal carbonization of olive wood in inert atmosphere. Thermochimica Acta. 2006; 440: 23–30.
[19] M. A. Abbassi, N. Grioui, K. Halouani, A. Zouliani, B. Zeghmati, A practical approach for modelling and control of biomass pyrolysis pilot plant with heat recovery from combustion of pyrolysis products. Fuel Process Technol, 2009; 90: 1278-1285.
[20] N. Grioui. Modeling of the carbonization of a cylindrical wood application particle to the wood of olive-tree. Chapter four in the thesis. 2004:92-127.
[21] ER. Tinney. The combustion of wooden dowels in heated air. Symp (Int) Combust. 1965; 10:925–30.
[22] WJ. Parker. Prediction of the heat release rate of wood. In: The first international symposium on fire safety science, MA, USA. 1986: 207–16.
[23] RH. White, EL. Schaffer, Application of CMA program to wood charring. Fire Technol. 1978; 14:279–90.
[24] H. Wenzl. The chemical technology of wood. New York. Academic Press. 1970.
[25] MA, Gronli, PhD thesis, Norwegian University of science and Technology, Norway. 1996.
[26] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publication, McGraw-Hill, New York, 1980.
[27] P. Gupta, R. K. Saha, Generalized Mathematical Modeling Of Fluid-Solid Non-Catalytic Reactions Using Finite Volume Method: Nonisothermal Analysis. Journal of Chemical Engineering Japan. 2003; 36(11): 1298-1307.
[28] P. Gupta, R. K. Saha, Generalized Mathematical Modeling of Fluid-Solid Non-Catalytic Reactions Using Finite Volume Method: Isothermal Analysis. Journal of Chemical Engineering Japan. 2003; 36(11): 1308-1317.
[29] P. Gupta, R. K. Saha, Analysis of Gas-Solid Noncatalytic Reactions In Porous Particles: Finite Volume Method. International Journal of Chemical Kinetics, Wiley Interscience, New York. 2004; 36(1): 1-11.
[30] P. Gupta, R. K. Saha, Generalized Mathematical Modeling of Fluid-Solid Non-Catalytic Reactions Using Finite Volume Method: Multiple Reactions. Canadian Journal of Chemical Engineering. 2004; 82(5): 1096-1103.
[31] P. Gupta, R. K. Saha, Proceeding of the Chemical Engineering Congress (CHEMCON), Chandigarh, India, 1999.
[32] DL. Pyle, CA. Zaror, Heat transfer and kinetics in the low temperature pyrolysis of solids. Chem Eng Sci. 1984; 39(1):147–58.
[33] C Di Blasi, M Lanzetta, Intrinsic Kinetics of isothermal xylan degradation in inert atmosphere. J Antal Appl Pyrolysis 40-41:287–303.
[34] M. Chaouch, Effect of the intensity of the treatment on the elementary composition and the durability of heat-treated wood: development of a marker of prediction of resistance to the mushrooms basidiomycetes, PhD thesis at the School Doctoral School Sciences and Engineering of the Resources Proceeded Produced and Environment. April 2011.
[35] M. J. Antal, G. Varhegyi, Cellulose pyrolysis kinetics: The current state of knowledge. Ind. Eng. Chem. Res. 1995; 34: 703-717.
[36] F. Shafizadeh. In Fundamentals of Biomass Thermochemical Conversion (R. P. Overend, T. A. Milne, and L. K. Mudge, Eds.), Elsevier, London. 1985: 183.
[37] C. Di Blasi, E. Gonzalez Hernandez, A. Santoro, Radiative pyrolysis of single moist wood particles. Ind Eng Chem Res 2000; 39: 873-882
[38] J .Larfeldt, B. Leckner, Ch. Morten, MC. Melaaen, Modelling and measurements of heat transfer in charcoal from pyrolysis of large wood particles. Biomass and Bioenergy. 2000; 18:507-14.
[39] C. Serbanescu, Étude et modélisation de la dégradation pyrolytique des mélanges complexes de composés organiques. Institut National Polytechnique de Toulouse (INP Toulouse). 2010: 169-188.