New Highly-Scalable Carbon Nanotube-Reinforced Glasses and Ceramics

We report herein the development and preliminary mechanical characterization of fully-dense multi-wall carbon nanotube (MWCNT)-reinforced ceramics and glasses based on a completely new methodology termed High Shear Compaction (HSC). The tubes are introduced and bound to the matrix grains by aid of polymeric binders to form flexible green bodies which are sintered and densified by spark plasma sintering to unprecedentedly high densities of 100% of the pure-matrix value. The strategy was validated across a PyrexTM glass / MWCNT composite while no identifiable factors limit application to other types of matrices. Nondestructive evaluation, based on ultrasonics, of the dynamic mechanical properties of the materials including elastic, shear and bulk modulus as well as Poisson’s ratio showed optimum property improvement at 0.5 %wt tube loading while evidence of nanoscalespecific energy dissipative characteristics acting complementary to nanotube bridging and pull-out indicate a high potential in a wide range of reinforcing and multifunctional applications. 





References:
[1] Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature,
354(6348), 56-58 (1991).
[2] Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M., “Exceptionally
high Young's modulus observed for individual carbon nanotubes,”
Nature, 381(6584), 678-680 (1996).
[3] Yu, M. F., Lourie, O., Dyer, M. J. et al., “Strength and breaking
mechanism of multiwalled carbon nanotubes under tensile load,”
Science, 287(5453), 637-640 (2000).
[4] Balandin, A. A., “Thermal properties of graphene and nanostructured
carbon materials,” Nature Materials, 10(8), 569-581 (2011).
[5] Berber, S., Kwon, Y. K., and Tomanek, D., “Unusually high thermal
conductivity of carbon nanotubes,” Physical Review Letters, 84(20),
4613-4616 (2000).
[6] Baughman, R. H., Zakhidov, A. A., and de Heer, W. A., “Carbon
nanotubes - the route toward applications,” Science, 297(5582), 787-792
(2002).
[7] Berber, S., Kwon, Y. K., and Tomanek, D., “Electronic and structural
properties of carbon nanohorns,” Physical Review B, 62(4), R2291-
R2294 (2000).
[8] Avouris, P., Chen, Z. H., and Perebeinos, V., “Carbon-based
electronics,” Nature Nanotechnology, 2(10), 605-615 (2007).
[9] Avouris, P., Freitag, M., and Perebeinos, V., “Carbon-nanotube
photonics and optoelectronics,” Nature Photonics, 2(6), 341-350 (2008).
[10] Dassios, K. G., Musso, S., and Galiotis, C., “Compressive behavior of
MWCNT/epoxy composite mats,” Composites Science and Technology,
72(9), 1027-1033 (2012).
[11] Dassios, K., and Galiotis, C., “Polymer-nanotube interaction in
MWCNT/poly(vinyl alcohol) composite mats,” Carbon, (2012).
[12] Spitalsky, Z., Tasis, D., Papagelis, K. et al., “Carbon nanotube-polymer
composites: Chemistry, processing, mechanical and electrical
properties,” Progress in Polymer Science, 35(3), 357-401 (2010).
[13] Cho, J., Inam, F., Reece, M. J. et al., “Carbon nanotubes: do they
toughen brittle matrices?,” Journal of Materials Science, 46(14), 4770-
4779 (2011).
[14] Dassios, K. G., “Carbon nanotube-reinforced ceramic matrix
composites: Processing and properties,” Ceramic Transactions, 248,
133-157 (2014).
[15] Cho, J., Boccaccini, A. R., and Shaffer, M. S. P., “Ceramic matrix
composites containing carbon nanotubes,” Journal of Materials Science,
44(8), 1934-1951 (2009).
[16] Inam, F., Yan, H. X., Peijs, T. et al., “The sintering and grain growth
behaviour of ceramic-carbon nanotube nanocomposites,” Composites
Science and Technology, 70(6), 947-952 (2010).
[17] Peigney, A., Laurent, C., Flahaut, E. et al., “Carbon nanotubes in novel
ceramic matrix nanocomposites,” Ceramics International, 26(6), 677-
683 (2000).
[18] Estili, M., and Kawasaki, A., “An approach to mass-producing
individually alumina-decorated multi-walled carbon nanotubes with
optimized and controlled compositions,” Scripta Materialia, 58(10), 906-
909 (2008).
[19] Thomas, B. J. C., Shaffer, M. S. P., and Boccaccini, A. R., “Sol-gel
route to carbon nanotube borosilicate glass composites,” Composites
Part a-Applied Science and Manufacturing, 40(6-7), 837-845 (2009).
[20] Peigney, A., Rul, S., Lefevre-Schlick, F. et al., “Densification during
hot-pressing of carbon nanotube-metal-magnesium aluminate spinel
nanocomposites,” Journal of the European Ceramic Society, 27(5),
2183-2193 (2007).
[21] Du, H. B., Li, Y. L., Zhou, F. Q. et al., “One-Step Fabrication of
Ceramic and Carbon Nanotube (CNT) Composites by In Situ Growth of
CNTs,” Journal of the American Ceramic Society, 93(5), 1290-1296
(2010).
[22] Dobedoe, R. S., West, G. D., and Lewis, M. H., “Spark plasma sintering
of ceramics: understanding temperature distribution enables more
realistic comparison with conventional processing,” Advances in
Applied Ceramics, 104(3), 110-116 (2005).
[23] Hvizdos, P., Puchy, V., Duszova, A. et al., “Tribological and electrical
properties of ceramic matrix composites with carbon nanotubes,”
Ceramics International, 38(7), 5669-5676 (2012).
[24] Tapaszto, O., Kun, P., Weber, F. et al., “Silicon nitride based
nanocomposites produced by two different sintering methods,” Ceramics
International, 37(8), 3457-3461 (2011).
[25] Zhang, S. C., Fahrenholtz, W. G., Hilmas, G. E. et al., “Pressureless
sintering of carbon nanotube-Al2O3 composites,” Journal of the
European Ceramic Society, 30(6), 1373-1380 (2010).
[26] Estili, M., Sakka, Y., and Kawasaki, A., “Unprecedented simultaneous
enhancement in strain tolerance, toughness and strength of Al2O3
ceramic by multiwall-type failure of a high loading of carbon
nanotubes,” Nanotechnology, 24(15), (2013).
[27] Matikas, T. E., Karpur, P., and Shamasundar, S., “Measurement of the
dynamic elastic moduli of porous titanium aluminide compacts,” Journal
of Materials Science, 32(4), 1099-1103 (1997).
[28] Estili, M., Kawasaki, A., and Sakka, Y., “Highly Concentrated 3D
Macrostructure of Individual Carbon Nanotubes in a Ceramic
Environment,” Advanced Materials, 24(31), 4322-+ (2012).
[29] Dassios, K. G., and Galiotis, C., “Direct measurement of fiber bridging
in notched glass-ceramic-matrix composites,” Journal of Materials
Research, 21(5), 1150-1160 (2006).
[30] Dassios, K. G., Kostopoulos, V., and Steen, M., “A micromechanical
bridging law model for CFCCs,” Acta Materialia, 55(1), 83-92 (2007).
[31] Xia, Z., Riester, L., Curtin, W. A. et al., “Direct observation of
toughening mechanisms in carbon nanotube ceramic matrix
composites,” Acta Materialia, 52(4), 931-944 (2004).
[32] Gu, Z. J., Yang, Y. C., Li, K. Y. et al., “Aligned carbon nanotubereinforced
silicon carbide composites produced by chemical vapor
infiltration,” Carbon, 49(7), 2475-2482 (2011).
[33] Dassios, K. G., Galiotis, C., Kostopoujos, V. et al., “Direct in situ
measurements of bridging stresses in CFCCs,” Acta Materialia, 51(18),
5359-5373 (2003).
[34] Dassios, K. G., “A review of the pull-out mechanism in the fracture of
brittle-matrix fibre-reinforced cowosites,” Advanced Composites
Letters, 16(1), 17-24 (2007).
[35] Dassios, K. G., Kostopoulos, V., and Steen, M., “Intrinsic parameters in
the fracture of carbon/carbon composites,” Composites Science and
Technology, 65(6), 883-897 (2005).