Molecular Identification of ESBL Genesbla GES-1, blaVEB-1, blaCTX-M blaOXA-1, blaOXA-4,blaOXA-10 and blaPER-1 in Pseudomonas aeruginosa Strains Isolated from Burn Patientsby PCR, RFLP and Sequencing Techniques

Fourty one strains of ESBL producing P.aeruginosa which were previously isolated from burn patients in Kerman University general hospital, Iran were subjected to PCR, RFLP and sequencing in order to determine the type of extended spectrum β- lactamases (ESBL), the restriction digestion pattern and possibility of mutation among detected genes. DNA extraction was carried out by phenol chloroform method. PCR for detection of bla genes was performed using specific primer for each gene. Restriction Fragment Length Polymorphism (RFLP) for ESBL genes was carried out using EcoRI, NheI, PVUII, EcoRV, DdeI, and PstI restriction enzymes. The PCR products were subjected to direct sequencing of both the strands for identification of the ESBL genes.The blaCTX-M, blaVEB-1, blaPER-1, blaGES-1, blaOXA-1, blaOXA-4 and blaOXA-10 genes were detected in the (n=1) 2.43%, (n=41)100%, (n=28) 68.3%, (n=10) 24.4%, (n=29) 70.7%, (n=7)17.1% and (n=38) 92.7% of the ESBL producing isolates respectively. The RFLP analysis showed that each ESBL gene has identical pattern of digestion among the isolated strains. Sequencing of the ESBL genes confirmed the genuinety of PCR products and revealed no mutation in the restriction sites of the above genes. From results of the present investigation it can be concluded that blaVEB-1 and blaCTX-M were the most and the least frequently isolated ESBL genes among the P.aeruginosa strains isolated from burn patients. The RFLP and sequencing analysis revealed that same clone of the bla genes were indeed existed among the antibiotic resistant strains.




References:
[1] Shakibaie M.R. Plasmid mediated metal and antibiotic resistance in
Pseudomonas aeruginosa strains isolated from burn patients. Medical
Journal of the Islamic Republic of Iran 2002; 16:159-163.
[2] Talbot GH, Bradley J, Edwards JE Jr, Gilbert D, Scheld M, Bartlett JG.
Bad bugs need drugs: an update on the development pipeline from the
antimicrobial availability task force of the Infectious Diseases Society of
America. Clin Infect Dis 2006; 42:657-68. (Erratum in Clin Infect Dis
2006; 42:1065.
[3] Navon-Venezia S, Ben-Ami R, Carmeli Y. Update on Pseudomonas
aeruginosa and Acinetobacter baumannii infections in the healthcare
setting. Curr Opin Infect Dis 2005; 18:306-13.
[4] Shakibaie MR, Shahcheraghi F, Hashemi A, Saeed Adeli N. Detection
of TEM, HSV and PER type extended spectrum beta- lactamases genes
among clinical strains of Pseudomonas aeruginosa isolated from burnt
patients at Shafa - hospital, Kerman, Iran. Iranian J Basic Medical
Sciences 2008; 11:104-111.
[5] Jones RN. Resistance patterns among nosocomial pathogens: trends over
the past few years. Chest 2001; 119(2 suppl):S397-404.
[6] Weld Hagen G, Poirel L, Nordmann P. Ambler class A extendedspectrum
β-lactamase in Pseudomonas aeruginosa: novel development
and clinical impact. Antimicrob Agents Chemother 2003; 47:2385-92.
[7] Bradford PA. Extended-spectrum β-lactamases in the 21st century:
characterization, epidemiology, and detection of this important
resistance threat. Clin Microbiol Rev 2001; 48:933-51.
[8] Paterson L. Extended-spectrum beta-lactamases: the European
experience. Current Opinion in Infectious Diseases 2001; 14: 697-
701.
[9] Bert F, Branger C, Lambert-Zechovsky N. Identification of PSE and
OXA ß-lactamase genes in Pseudomonas aeruginosa using PCR-
restriction fragment length polymorphism. Antimicrob Chemother 2002;
50: 11-18.
[10] Jiang X, Zhang Z, Li M, Zhou D, Ruan F, Lu E. Detection of Extended-
Spectrum ß-Lactamases in clinical isolates of Pseudomonas aeruginosa.
Antimicrob Agents and Chemother 2006; 50: 2990-2995.
[11] Lee S, Park YJ, Kim M, Lee HK, Han K, Kang CS, et al. Prevalence of
Ambler class A and D b-lactamases among clinical isolates of
Pseudomonas aeruginosa in Korea. J Antimicrob Chemother 2005;
56:122-7.
[12] Al Naiemi, N, Duim, B, Bart, A. A CTX-M extended-spectrum ßlactamase
in Pseudomonas aeruginosa and Stenotrophomonas
maltophilia. J Med Microbiol 2006; 55:1607-1608.
[13] Mirsalehian A, Feizabadi M, Nakhjavani F, Jabalameli F, Goli H,
Kalantari N. Detection of VEB-1, OXA-10 and PER-1 genotypes in
extended-spectrum β-lactamase-producing Pseudomonas aeruginosa
strains isolated from burn patients. Burns 2010; 36: 70- 74.
[14] Woodford N, Zhang J, Kaufmann ME, Yarde S, Tomas Mdel M, Faris
C, Vardhan MS, Dawson S, Cotterill SL, Livermore DM. Detection of
Pseudomonas aeruginosa isolates producing VEB-type extendedspectrum
beta-lactamases in the United Kingdom. Antimicrob
Chemother 2008; 62:1265-8.
[15] Blagui S, Achour W, Abdeladhim A, Ben Hassen A. Identification of
SHV-type extended spectrum beta-lactamase genes in Pseudomonas
aeruginosa by PCR-restriction fragment length polymorphism and
insertion site restriction-PCR. Pathol Biol (Paris) 2009; 57(5): 420-4.
[16] Shahcheraghi F, Nikbin VS, Feizabadi MM. Prevalence of ESBLs genes
among multidrug-resistant isolates of Pseudomonas aeruginosa isolated
from Patients in Tehran. Microb Drug Resist 2009; 15:37-9.
[17] picão rc, poirel l, gales ac, nordmann p. diversity of beta-lactamases
produced by ceftazidime-resistant pseudomonas aeruginosa isolates
causing bloodstream infections in brazil. antimicrob agents chemother
2009; 53:3908-13.
[18] Empel J, Filczak K, Mr├│wka A, Hryniewicz W, Livermore DM,
Gniadkowski M. Outbreak of Pseudomonas aeruginosa i nfections with
PER-1 extended-spectrum beta-lactamase in Warsaw, Poland: further
evidence for an international clonal complex. J Clin Microbiol 2007;
45:2829-34.
[19] Livermore DM. Multiple mechanisms of antimicrobial resistance in
Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 2002;
34:634-40.
[20] Oh SJ, Lee SU, Hwang HY, Bae K, et al. Prevalence of Class A
Extended-Spectrum β-Lactamases in Clinical Isolates of Acinetobacter
baumannii and Pseudomonas aeruginosa. Korean J Lab Med 2006;
26(1):14-20.
[21] Poirel L, Rotimi VO, Mokaddas ME, Karim A, and Nordmann P. VEB-
1-like extended-spectrum β-lactamases in Pseudomonas aeruginosa,
Kuwait. Emerg Infect Dis 2001; 7:468- 470.
[22] Poirel L, Weldhagen GF, Naas T, Champs C, et al. GES-2, a class A β-
lactamase from Pseudomonas aeruginosa with increased hydrolysis of
imipenem. Antimicrob Agents Chemother 2001; 45:2598-2603.
[23] Ahmed AM, Nakano H, Shimamoto T. The first characterization of
extended-spectrum ß-lactamase producing Salmonella in Japan.
Antimicrob Chemother 2004; 54:283-284.
[24] Aubert D, Poirel L, Chevalier J, et al. Pseudomonas aeruginosa.
Antimicrob Agents Chemother 2001; 45: 1615-1620.
[25] Kenji Marumo, Takeda A, Nakamura Y and Nakay K. Detection of
OXA-4 ß-lactamase in Pseudomonas aeruginosa isolates by genetic
methods. Antimicrob Chemother 1999; 43: 187-193.
[26] Bert F, Branger C, Zechovsky NL. Identification of PSE and OXA β-
lactamase genes in Pseudomonas aeruginosa using PCR-restriction
fragment length polymorphism. Antimicrob Chemother 2002; 50:11-8.
[27] Claeys G, Verschraegen G, Baere T, and Vaneechoutte M. PER-1 β-
lactamase producing Pseudomonas aeruginosa in an intensive care unit.
Antimicrob Chemother 2000; 45:924-925.
[28] Sambrook J, Fritsch EF, Manaiatis T. Molecular cloning: a laboratory
manual, 2nd ed. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory
Press 1989.