Micromechanics of Stress Transfer across the Interface Fiber-Matrix Bonding

The study and application of composite materials are a truly interdisciplinary endeavor that has been enriched by contributions from chemistry, physics, materials science, mechanics and manufacturing engineering. The understanding of the interface (or interphase) in composites is the central point of this interdisciplinary effort. From the early development of composite materials of various nature, the optimization of the interface has been of major importance. Even more important, the ideas linking the properties of composites to the interface structure are still emerging. In our study, we need a direct characterization of the interface; the micromechanical tests we are addressing seem to meet this objective and we chose to use two complementary tests simultaneously. The microindentation test that can be applied to real composites and the drop test, preferred to the pull-out because of the theoretical possibility of studying systems with high adhesion (which is a priori the case with our systems). These two tests are complementary because of the principle of the model specimen used for both the first "compression indentation" and the second whose fiber is subjected to tensile stress called the drop test. Comparing the results obtained by the two methods can therefore be rewarding.




References:
[1] Kim, J.K., Mai, Y.W., 1998. Engineered Interfaces in Fiber Reinforced Composites. Elsevier Science.
[2] Jiang Xiaoyu, KONG Xiangan, Micro-mechanical characteristics of fiber/matrix interface in composite materials, Composites Science and Technology 59(1999) 635-642.
[3] Drzal L. T. the Interphase in Epoxy Composites , Advances in Polymer Science, Editor: K. Dušek 1986; vol.75: pp 1-32.
[4] M.R. Piggott, The Effect of the Interface/interphase on Fiber Composite Properties, polymer Composites, October 1987, Volume 8, Issue 5, pages 291–297, (Version of Record online: 30 AUG 2004).
[5] J.K. Kim & Y.W. Mai, High Strength, High Fracture Toughness Fibre Composites with Interface Control A Review, Composites Science and Technology 1991; 41: 333-378.
[6] J. K. Kim, L. Zhou, Y.W. Mai / Stress transfer in the fiber fragmentation test- Part I An improved analysis based on a shear strength criterion/ Journal of Materials Science 1993; 28: 6233-6245.
[7] J. K. Kim, Y.W. Mai, Stress transfer in the fiber fragmentation test- Part II Multiple fiber composites, Journal of Materials Science 1995; 30: 3024-3032.
[8] Christensen, R., Lo, K., 1979. Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27 (4), 315–330.
[9] Hashin, Z., 1990. Thermoelastic properties of fiber composites with imperfect interface. Mech. Mater. 8 (4), 333–348.
[10] Hayes, S., Lane, R., Jones, F., 2001. Fibre/matrix stress transfer through a discrete interphase. Part 1: single-fibre model composites. Compos.Part A Appl. Sci. Manuf. 32 (3), 379–389.
[11] Qiu, Y., Weng, G., 1991. Elastic moduli of thickly coated particle and fiber reinforced composites. J. Appl. Mech. 58 (2), 388–398.
[12] Rjafiallah, S., Guessasma, S., Bizot, H., 2010. Effect of surface etching on interphase and elastic properties of a biocomposite reinforced using glass–silica particles. Compos. Sci. Technol. 70 (8), 1272–1279.
[13] Jiang, Y., Guo, W., Yang, H., 2008. Numerical studies on the effective shear modulus of particle reinforced composites with an inhomogeneous inter-phase. Comput. Mater. Sci. 43 (4), 724–731.
[14] Wang, J., Crouch, S.L., Mogilevskaya, S.G., 2006. Numerical modeling of the elastic behavior of fiber-reinforced composites with inhomogeneous interphases. Compos. Sci. Technol. 66 (1), 1–18.
[15] Shen, L., Li, J., 2005. Homogenization of a fibre/sphere with an inhomogeneous interphase for the effective elastic moduli of composites. Proc. R. Soc. A Math. Phys. Eng. Sci. 461 (2057), 1475– 1504.
[16] Jayaraman, K., Reifsnider, K.L., 1992. Residual stresses in a composite with continuously varying Young’s modulus in the fiber/matrix interphase. J. Compos. Mater. 26 (6), 770–791.
[17] Jayaraman, K., Reifsnider, K.L., 1993. The interphase in unidirectional fiber-reinforced epoxies: effect on residual thermal stresses. Compos. Sci. Technol. 47 (2), 119–129.
[18] Huang, Y., Young, R.J., 1996. Interfacial micromechanics in thermoplastic and thermosetting matrix carbon fibre composites. Compos. Part A Appl. Sci. Manuf. 27 (10), 973–980.
[19] Kiritsi, C., Anifantis, N., 2001. Load carrying characteristics of short fiber composites containing a heterogeneous interphase region. Comput. Mater. Sci. 20 (1), 86–97.
[20] Shen, L., Li, J., 2003. Effective elastic moduli of composites reinforced by particle or fiber with an inhomogeneous interphase. Int. J. Solids Struct. 40 (6), 1393–1409.
[21] Romanowicz, M., 2010. Progressive failure analysis of unidirectional fiber-reinforced polymers with inhomogeneous interphase and randomly distributed fibers under transverse tensile loading. Compos. Part A Appl. Sci. Manuf. 41 (12), 1829–1838.
[22] P.S.Theocaris «The unfolding model for the representation of the mesophase layer in composites (Representation de la mésophase des composites par un modèle de transition) ». Journal of Applied
Polymer Science, 30, p. 621-645, New York (1985).
[23] Allen Yu, Vijay Gupt «Measurement of in situ fiber/matrix interface strength in graphite/epoxy composites. University of California (1998).
[24] A. Kelly, W.R. Tyson « fiber strengthened materials, in high strength material». V.F, Zackay Ed, J. Wiley &Sons, London (1964).
[25] N. Chandra, H. Ghonem Interfacial mechanics of push-out tests: «theory and experiments». Composites part A: applied science and manufacturing (2001).
[26] Ibrahim Mohamed Haisam « Elaboration des matériaux composites modèles unifilamentaire à fibres longues et matrice silice sol-gel et caractérisation micromécaniques de l’interface». Thèse de doctorat, Ecole Doctorale Matériaux de Lyon (2006).
[27] Gutowski (W) Effet of fibre -matrix adhésion on mechanical properties of composites (effet de l’adhésion fibre-matrice sur les propriétés mécaniques des composites P505-520, composites interfaces (ICC-III), Elsevier science, Pub.CO, Inc, New York (1990).
[28] Béatrice Large –Toumi Etude du comportement en fatigue de composite carbone époxyde : rôle de l’interface Thèse de doctorat école centrale de LYON (1994).