MHD Natural Convection Flow of Tangent Hyperbolic Nanofluid Past a Vertical Permeable Cone

In this paper, a non-similraity analysis has been
presented to exhibit the two-dimensional boundary layer flow
of magnetohydrodynamic (MHD) natural convection of tangent
hyperbolic nanofluid nearby a vertical permeable cone in the presence
of variable wall temperature impact. The mutated boundary layer
nonlinear governing equations are solved numerically by the an
efficient implicit finite difference procedure. For both nanofluid
effective viscosity and nanofluid thermal conductivity, a number of
experimental relations have been recognized. For characterizing the
nanofluid, the compatible nanoparticle volume fraction model has
been used. Nusselt number and skin friction coefficient are calculated
for some values of Weissenberg number W, surface temperature
exponent n, magnetic field parameter Mg, power law index m and
Prandtl number Pr as functions of suction parameter. The rate of heat
transfer from a vertical permeable cone in a regular fluid is less than
that in nanofluids. A best convection has been presented by Copper
nanoparticle among all the used nanoparticles.

Authors:



References:
[1] S.U.S. Choi, ”Enhancing thermal conductivity of fluids with
nanoparticles”, ASME Fluids Engng. Div. vol. 231, pp. 99-105,
1995.
[2] C.Y. Cheng, ”Free convection boundary layer flow over a horizontal
cylinder of elliptic cross section in porous media saturated by a nanofluid:,
Int. Commun. Heat Mass Transfer vol. 39, pp. 931-936, 2012.
[3] A. Mahdy, S.E. Ahmed, ”Laminar free convection over a vertical wavy
surface embedded in a porous medium saturated with a nanofluid”,
Transport Porous Media vol. 91, pp. 423-435, 2012.
[4] Y.Q. Li, F.C. Wang, H. Liu, H.A. Wu, ”Nanoparticle-tuned spreading
behavior of nanofluid droplets on the solid substrate”, Microfluid
Nanofluid vol. 18, pp. 111-120, 2015.
[5] J. Sarkar, ”A critical review on convective heat transfer correlations of
nanofluids”, Renew Sust. Energ. Rev. vol. 15, pp. 3271-3277, 2011.
[6] J. Buongiorno, ”Convective transport in nanofluids”, J. Heat Transfer vol.
128, pp. 240-250, 2006.
[7] O.D. Makinde, A. Aziz, ”Boundary layer flow of a nanofluid past a
stretching sheet with a convective boundary condition”, Int. J. Therm.
Sci. vol. 50, pp. 1326-1332, 2011.
[8] A. Mahdy, A.J. Chamkha, ”Heat transfer and fluid flow of a
non-Newtonian nanofluid over an unsteady contracting cylinder
employing Buongiorno’s model”, Int. J. Numer. Methods Heat & Fluid
Flow vol. 25(4), pp. 703-723, 2015.
[9] A. Mahdy, ”Aspects of homogeneous-heterogeneous reactions on natural
convection flow of micropolar fluid past a permeable cone”, App. Math.
Comput. vol. 352, pp. 59-67, 2019.
[10] A.J. Chamkha, R.S.R. Gorla, K. Ghodeswar, ”Nonsimilar solution for
natural convective boundary layer flow over a sphere embedded in a
porous medium saturated with a nanofluid”, Transport Porous Media vol.
86(1), pp. 13-22, 2010.
[11] S. Choi, ”Nanofluids: from vision to reality through research”, J. Heat
Transfer vol. 131(3), pp. 1-9, 2009.
[12] A. Mahdy, ”Natural convection boundary layer flow due to gyrotactic
microorganisms about a vertical cone in porous media saturated by a
nanofluid”, J. Braz. Soc. Mech. Sci. Engin., vol. 38(1), pp. 67-76, 2016.
[13] E.A. Sameh, A. Mahdy, ”Natural convection flow and heat transfer
enhancement of a nanofluid past a truncated cone with magnetic field
effect”, World J. Mech. vol. 2, pp. 272-279, 2012.
[14] E. Abu-Nada, H.F. Oztop, I. Pop, ”Buoyancy induced flow in a nanofluid
filled enclosure partially exposed to forced convection”, Superlattices
Microstructures vol. 51(3), pp. 381-395, 2012.
[15] C. Kleinstreuer, Y. Feng, ”Experimental and theoretical studies of
nanofluid thermal conductivity enhancement: a review”, Nano. Res. Lett.
vol. 6, pp. 1-13, 2011.
[16] A. Mahdy, M.E. Hillal, ”Uncertainties in physical property effects on
viscous flow and heat transfer over a nonlinearly stretching sheet with
nanofluids”, Int. Commun. Heat Mass Transfer vol. 39, pp. 713-719, 2012.
[17] A.V. Kuznetsov, D.A. Nield, ”Natural convective boundary-layer flow of
a nanofluid past a vertical plate”, Int. J. Therm. Sci. vol. 49, pp. 243-247,
2010
[18] T. Hayat, M. Shafique, A. Tanveer, A. Alsaedi, ”Magnetohydrodynamic
effects on peristaltic flow of hyperbolic tangent nanofluid with slip
conditions and Joule heating in an inclined channel”, Int. J. Heat Mass
Transfer vol. 102, pp. 54-63, 2016.
[19] T. Hayat, A. Shafiq, A. Alsaedi, ”Characteristics of magnetic field and
melting heat transfer in stagnation point flow of Tangent hyperbolic
liquid”, J. Magn. Magn. Mater. vol. 405, pp. 97-106, 2016.
[20] S.A. Shehzad, Z. Abdullah, F.M. Abbasi, T. Hayat, A. Alsaedi,
”Magnetic field effect in three-dimensional flow of an Oldroyd-B
nanofluid over a radiative surface”, J. Magn. Magn. Mater. vol. 399, pp.
97-108, 2016.
[21] M. Waqas, T. Hayat, M. Farooq, S.A. Shehzad, A. Alsaedi,
”Cattaneo-Christov heat flux model for flow of variable thermal
conductivity generalized Burgers fluid”, J. Mol. Liq. vol. 220, pp.
642-648, 2016.
[22] M.A. Abbas, Y.Q. Bai, M.M. Bhatti, M.M. Rashidi, ”Three dimensional
peristaltic flow of hyperbolic tangent fluid in nonuniform channel having
flexible walls”, Alex. Eng. J. vol. 55, pp. 653-662, 2016.
[23] F.S. Ibrahim, S.M. Abdel-Gaid, R.S.R. Gorla, ”Non-Darcy mixed
convection fl ow along a vertical plate embedded in a non-Newtonian
fluid saturated porous medium with surface mass transfer”, Int. J. Numer.
Meth. Heat & Fluid Flow vol. 10, pp. 397-408, 2000.
[24] A. Mahdy, ”Non-Newtonian nanofluid free convection flow subject to
mixed thermal boundary conditions about a vertical cone”, J. Braz. Soc.
Mech. Sci. Eng. vol. 35, pp. 951-960, 2014.
[25] H.T. Chen, C.K. Chen, ”Natural convection of a non-Newtonian fluid
about a horizontal cylinder and a sphere in a porous medium”, Int.
Commun. Heat Mass Transfer vol. 15, pp. 605-614, 1988. [26] H.T. Chen, C.K. Chen, ”Free convection flow of non-Newtonian fluids
along a vertical plate embedded in a porous medium”, ASME J. Heat
Transfer vol. 110, pp. 257-260. 1988.
[27] T. Salahuddin, M.Y. Malik, A. Hussain, M. Awais, I. Khanb, M. Khan,
”Analysis of tangent hyperbolic nanofluid impinging on a stretching
cylinder near the stagnation point”, Results in Physics vol. 7, pp. 426-434,
2017.
[28] G.K. Ramesh, B.J. Gireesha, T. Hayat, A. Alsaedi, ”Stagnation point
flow of Maxwell fluid towards a permeable surface in the presence of
nanoparticles”, Alex. Eng. J. vol. 55, pp. 857-865, 2016.
[29] K.A. Yih, ”Effect of radiation on natural convection about a truncated
cone”, Int. J. Heat Mass Transfer vol. 42, pp. 4299-4305, 1999.
[30] I. Pop, T.Y. Na, ”Coupled heat and mass transfer by natural convection
about a truncated cone in the presence of magnetic field and radiation
effects”, Numer. Heat Transfer Part A Application vol. 39, pp. 511-530,
2001.
[31] T.Y. Na, J.P. Chiou, ”Laminar natural convection over a frustum of a
cone”, App. Sci. Res. vol. 35, pp. 409-421, 1979.
[32] R.S.R. Gorla, W.R. Schoren, H.S. Takhar, ”Natural convection boundary
layer flow of a micropolar fluid over an isothermal cone”, Acta Mech.
vol. 61, pp. 139-152, 1986.
[33] C.Y. Cheng, ”Natural convection boundary layer flow of a micropolar
fluid over a vertical per- meable cone with variable wall temperature”,
Int. Commun. Heat Mass Transfer vol. 38, pp. 429-433, 2011.
[34] A. Postelnicu, ”Free convection about a vertical frustum of a cone in a
micropolar fluid”, Int. J. Engng. Sci. vol. 44, pp. 672-682, 2006.
[35] M.A. Hossain, C.S. Paul, ”Free convection from a vertical permeable
circular cone with non-uniform surface temperature”, Acta Mech. vol.
151, pp. 103-114, 2011.
[36] F.G. Blottner, ”Finite-difference methods of solution of the
boundary-layer equation”, AIAA J. vol. 8, pp. 193-205, 1970.
[37] R. Jawad, M.R. Azizah, O. Zurni, ”Numerical investigation of
copper-water (Cu-water) nanofluid with different shapes of nanoparticles
in a channel with stretching wall: slip effects”, Math. Comput. Appl. vol.
21, pp. 43-58, 2016.
[38] B.C. Pak, Y.I. Cho, ”Hydrodynamic and heat transfer study of dispersed
fluid with submicron metallic oxide particles”, Exper. Heat Transfer vol.
11(2), pp. 151-170, 1998.
[39] L. Godson, B. Raja, D.M. Lal, S. Wongwises, ”Experimental
investigation on the thermal conductivity and viscosity of silver-deionized
water nanofluid”, Exper. Heat Transfer vol. 23(4), pp. 317-332, 2010.
[40] S.M. Aminossadati, B. Ghasemi, ”Natural convection cooling of a
localised heat source at the bottom of a nanofluid-filled enclosure”, Europ.
J. Mech. B/Fluids vol. 28(5), pp. 630-640, 2009.