Maximizing Nitrate Absorption of Agricultural Waste Water in a Tubular Microalgae Reactor by Adapting the Illumination Spectrum

Microalgae-based photobioreactors (PBR) for Life Support Systems (LSS) are currently being investigated for future space missions such as a crewed base on planets or moons. Biological components may help reducing resupply masses by closing material mass flows with the help of regenerative components. Via photosynthesis, the microalgae use CO2, water, light and nutrients to provide oxygen and biomass for the astronauts. These capabilities could have synergies with Earth applications that tackle current problems and the developed technologies can be transferred. For example, a current worldwide discussed issue is the increased nitrate and phosphate pollution of ground water from agricultural waste waters. To investigate the potential use of a biological system based on the ability of the microalgae to extract and use nitrate and phosphate for the treatment of polluted ground water from agricultural applications, a scalable test stand is being developed. This test stand investigates the maximization of intake rates of nitrate and quantifies the produced biomass and oxygen. To minimize the required energy, for the uptake of nitrate from artificial waste water (AWW) the Flashing Light Effect (FLE) and the adaption of the illumination spectrum were realized. This paper describes the composition of the AWW, the development of the illumination unit and the possibility of non-invasive process optimization and control via the adaption of the illumination spectrum and illumination cycles. The findings were a doubling of the energy related growth rate by adapting the illumination setting.





References:
[1] F. Wisotzky, N. Cremer, S. Lenk, Angewandte Grundwasserchemie, Hydrogeologie und hydrogeochemische Modellierung: Grundlagen, Anwendungen und Problemlösungen, 2. Auflage, Springer Spektrum, Berlin, 2018.
[2] M. Kranert, Einfhrung in die Abfallwirtschaft, Morgan Kaufmann, [Place of publication not identified], 2015.
[3] U. Prüße, K.-D. Vorlop, Entfernung von Nitrat aus Trinkwasser, CHEMKON 3 (1996) 62–67.
[4] W. Römer, Vergleichende Untersuchungen zur Pflanzenverfügbarkeit von Phosphat aus verschiedenen P-Recycling-Produkten im Keimpflanzenversuch, J. Plant Nutr. Soil Sci. 169 (2006) 826–832.
[5] C. Posten, Design principles of photo-bioreactors for cultivation of microalgae, Eng. Life Sci. 9 (2009) 165–177.
[6] S. Abu-Ghosh, D. Fixler, Z. Dubinsky, D. Iluz, Flashing light in microalgae biotechnology, Bioresource technology 203 (2016) 357–363.
[7] M. Calvin, Der Weg des Kohlenstoffs in der Photosynthese Nobel-Vortrag am 11. Dezember 1961, Angew. Chem. 74 (1962) 165–175.
[8] J. Degen, A. Uebele, A. Retze, U. Schmid-Staiger, W. Trösch, A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect, Journal of Biotechnology 92 (2001) 89–94.
[9] H. Helisch, J. Keppler, J. Bretschneider, S. Belz, S. Fasoulas, Preparatory ground-based experiments on cultivation of Chlorella vulgaris for the ISS experiment PBR@LSR, 2016.
[10] H. Helisch, S. Belz, J. Keppler, G. Detrell, N. Henn, S. Fasoulas et al., Non-axenic microalgae cultivation in space – Challenges for the membrane μgPBR of the ISS experiment PBR@LSR, Albuquerque, New Mexico, 2018.
[11] M.F. Blair, B. Kokabian, V.G. Gude, Light and growth medium effect on Chlorella vulgaris biomass production, Journal of Environmental Chemical Engineering 2 (2014) 665–674.
[12] R. Filali, S. Tebbani, D. Dumur, S. Diop, Estimation of Chlorella vulgaris growth rate in a continuous photobioreactor, Proceedings of the 18th World CongressThe International Federation of Automatic Control (2011) 6230–6235.
[13] J. Martin, J. Keppler, G. Detrell, H. Helisch, R. Ewald, S. Fasoulas, Microalgae-based Photobioreactors for a Life Support System of a Lunar Base, Boston, USA, 2019.
[14] Y.-K. Lee, Microalgal mass culture systems and methods: Their limitation and potential, Journal of Applied Phycology 13 (2001) 307–315.
[15] F.G.A. Fernández, F.G. Camacho, J.A.S. Pérez, J.M.F. Sevilla, E.M. Grima, A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture, Biotechnol. Bioeng. 55 (1997) 701–714.
[16] H. Kindl, Biochemie der Pflanzen, Vierte, völlig neubearbeitete und aktualisierte Auflage, Springer Berlin Heidelberg, Berlin, Heidelberg, 1994.
[17] C. Mildenberger, Development of an illumination unit with an adaptive spectrum for microalgae cultivation: Masters Thesis supervised by J. Martin, Stuttgart, 2019.
[18] Z. Amini Khoeyi, J. Seyfabadi, Z. Ramezanpour, Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris, Aquacult Int 20 (2012) 41–49.
[19] D.P. Maxwell, S. Falk, C.G. Trick, N. Huner, Growth at Low Temperature Mimics High-Light Acclimation in Chlorella vulgaris, Plant physiology 105 (1994) 535–543.
[20] H. Helisch, J. Keppler, G. Detrell, S. Belz, R. Ewald, S. Fasoulas et al., High density long-term cultivation of Chlorella vulgaris SAG 211-12 in a novel microgravity-capable membrane raceway photobioreactor for future bioregenerative life support in SPACE, Life Sciences in Space Research (2019).
[21] D.G. Kim, C. Lee, S.-M. Park, Y.-E. Choi, Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris, Bioresource technology 159 (2014) 240–248.
[22] A.C. Ley, D.C. Mauzerall, Absolute absorption cross-sections for Photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris, Biochimica et Biophysica Acta (BBA) - Bioenergetics 680 (1982) 95–106.
[23] R.J. Porra, W.A. Thompson, P.E. Kriedemann, Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy, Biochimica et Biophysica Acta (BBA) - Bioenergetics 975 (1989) 384–394.
[24] J. Martin, G. Detrell, R. Ewald, S. Fasoulas, Scalable Microalgae-based Life Support System, Washington, USA, 2019.
[25] G. Mattheß, Die Beschaffenheit des Grundwassers, 3., überarb. Aufl., Borntraeger, Berlin, 2009.
[26] Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit, Nitratbericht 2016: Gemeinsamer Bericht der Bundesministerien für Umwelt, Naturschutz, Bau und Reaktorsicherheit sowie für Ernährung und Landwirtschaft, 2017.
[27] Gewässerkundlicher Landesdienst, Bericht zur Beschaffenheit des Grundwassers in Sachsen-Anhalt 2001 – 2010, 2012.
[28] P. Pohl, M.K. Ohlhase, S.K. Rautwurst, K. Laus-Kinnerk Baasch, An inexpensive inorganic medium for the mass cultivation of freshwater microalgae, Phytochemistry 26 (1987) 1657–1659.
[29] H. Helisch, J.-K. Chack, S. Fasoulas, F. Lapierre, A.G. Heyer, Close the gap – Potential of microalgal biomass for Closed ECLSS and future in-situ resource utilization in space, Boston, USA, 2019