In Vitro Antibacterial and Antifungal Effects of a 30 kDa D-Galactoside-Specific Lectin from the Demosponge, Halichondria okadai

The present study has been taken to explore the screening of in vitro antimicrobial activities of D-galactose-binding sponge lectin (HOL-30). HOL-30 was purified from the marine demosponge Halichondria okadai by affinity chromatography. The molecular mass of the lectin was determined to be 30 kDa with a single polypeptide by SDS-PAGE under non-reducing and reducing conditions. HOL-30 agglutinated trypsinized and glutaraldehydefixed rabbit and human erythrocytes with preference for type O erythrocytes. The lectin was subjected to evaluation for inhibition of microbial growth by the disc diffusion method against eleven human pathogenic gram-positive and gram-negative bacteria. The lectin exhibited strong antibacterial activity against gram-positive bacteria, such as Bacillus megaterium and Bacillus subtilis. However, it did not affect against gram-negative bacteria such as Salmonella typhi and Escherichia coli. The largest zone of inhibition was recorded of Bacillus megaterium (12 in diameter) and Bacillus subtilis (10 mm in diameter) at a concentration of the lectin (250 μg/disc). On the other hand, the antifungal activity of the lectin was investigated against six phytopathogenic fungi based on food poisoning technique. The lectin has shown maximum inhibition (22.83%) of mycelial growth of Botrydiplodia theobromae at a concentration of 100 μg/mL media. These findings indicate that the lectin may be of importance to clinical microbiology and have therapeutic applications.




References:
[1] Goldstein, I. J. (2002). Lectin structure-activity: the story is never over. J
Agric Food Chem, 50, 6583-6585.
[2] Vazquez, L., Alpuche, J., Maldonado, G., Agundis, C., Morales, A. P.,
and Zenteno, E. (2009). Immunity mechanisms in crustaceans. Innate
Immun, 15, 179-188.
[3] Gabius, H. J., Unverzagt, C., and Kayser, K. (1998). Beyond plant lectin
histochemistry: preparation and application of markers to visualize the
cellular capacity for protein-carbohydrate recognition. Biotech
Histochem 73, 263-277.
[4] Stabili, I., Pagliara, P., and Roch, P. (1996). Antibacterial activity in the
coelomocytes of the sea urchin Paracentrotus lividus. Comp Biochem
Physiol, 113B, 639-644.
[5] Wang, C., Wang, Y., Huffman, N. T., Cui, C., Yao, X., and Midura, S.
(2009). Confocal laser raman microspectroscopy of biomineralization
foci in UMR 106 osteoblastic cultures reveals temporally synchronized
protein changes preceding and accompanying mineral crystal deposition.
J Biol Chem, 284, 7100-7113.
[6] Mali, B., Ried, J. S., Frohme, M., and Frank, U. (2006). Structural but
not functional conservation of an immune molecule: a tachylectin-like
gene in Hydractinia. Dev Comp Immunol, 30, 275-281.
[7] Kvennefors, E. C. E., Leggat, W., Guldberg, O. H., Degan, B. M., and
Barnes, A. C. (2008). An ancient and variable mannose-binding lectin
from the coral Acropora millepora binds both pathogens and symbionts.
Dev Comp Immunol, 32, 1582-1592.
[8] Canesi, L., Gallo, G., Gavioli, M., and Pruzzo, C. (2002). Bacteriahemocyte
interactions and phagocytosis in marine bivalves. Microbe Res
Tech, 57, 469-476.
[9] Austin, B. (1988). Marine Microbiology. University Press, Cambridge,
U. K., 166-171.
[10] Muller, W. E. G. (2001). How was metazoan threshold crossed: the
hypothetical Urmetazoan. Comp Biochem Physiol, 129A, 433-460.
[11] Vogel, S. (1977). Current-induced flow through living sponges in
nature. Proc Natl Acad Sci, 74, 2069-2071.
[12] Gonzales, J. M., and Moran, M. A. (1997). Numerical dominance of a
group of marine bacteria in the alpha-subclass of the class Proteobacteria
in coastal seawater. Appl Environ Microbiol, 63, 4237-4242.
[13] Proksch, P. (1994). Defensive roles for secondary metabolites from
marine sponges and sponge-feeding nudibranchs. Toxicon, 32, 639-655.
[14] Muller, W. E. G., Blumbach, B., and Muller, I. M. (1999). Evolution of
the innate and adaptive immune systems: Relationships between
Potential Immune Molecules in the Lowest Metazoan Phylum and Those
in Vertebrates1. Transplantation, 68, 1215-1227.
[15] Bretting, H., Jacobs, G., Donadey, C., and Vacelet, J. (1983).
Immunohistochemical studies on the distribution and the function of the
D-galactose-specific lectins in the sponge Axinella polypoides
(Schmidt). Cell Tiss Res, 229, 551-571.
[16] Schroder, H. C., Ushijima, H., Krasko, A., Gamulin, V., Thakur, N. L.,
Diehl-Seifert, B., Muller, I. M., and Muller, W. E. G. (2003). Emergence
and disappearance of an immune molecule, an antibacterial lectin, in
basal metazoan; A tachylectin-related protein in the sponge Suberites
domuncula. J Biol Chem, 278, 32810 -32817.
[17] Tachibana, K., Scheuer, P. J., Tsukitani, Y., Kikuchi, H., Engen, D. V.,
et al. (1981). Okadaic acid, a cytotoxic polyether from two marine
sponges of the genus Halichondria. J Am Chem Soc, 103, 2469-2471.
[18] Kawagishi, H,. Yamawaki, M., Isobe, S., Usui, T., Kimura, A., and
Chiba, S. (1994). Two lectins from the marine sponge Halichondria
okadai: an N-acetyl-sugar-specific lectin (HOL-I) and an Nacetyllactosamine-
specific lectin (HOL-II). J Biol Chem, 269, 1375-
1379.
[19] Kawsar, S. M. A., Fujii, Y., Matsumoto, R., Ichikawa, T., Tateno, H.,
Hirabayashi, J., et al. (2008). Isolation, purification, characterization and
glycan-binding profile of a D-galactoside specific lectin from the marine
sponge, Halichondria okadai. Comp Biochem Physiol, 150B, 349-357.
[20] Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F.
H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and
Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid.
Anal Biochem , 150, 76-85.
[21] Wiechelman, K. J., Braun, R. D., and Fitzpatrick, J. D. (1988).
Investigation of the bicinchoninic acid protein assay: identification of
the groups responsible for color formation. Anal Biochem, 175, 231-237.
[22] Laemmli, U. K. (1970). Cleavage of structural proteins during assembly
of the head of bacteriophage T4. Nature, 227, 680-685.
[23] Matsui, T. (1984). D-galactoside specific lectins from coelomocytes of
the echiuran, Urechis unicinctus. Biol Bull, 166, 178-188.
[24] Bauer, A. W., Kirby, M. M., Sherris, J. C., and Turck, M. (196).
Antibiotic susceptibility testing by a standardized single disc method.
Am J Clin Path, 45, 493-496.
[25] Grover, R. K., and Moore, J. D. (1962). Toximetric studies of fungicides
against the brown rot organisms, Sclerotinia fructicola and S. laxa.
Phytopathology, 52, 876-880.
[26] Miah, M. A.T., Ahmed, H. U., Sharma, N. R., Ali, A., and Miah, S. A.
(1990). Antifungal activity of some plant extracts. Bang J Bot, 19, 5-10.
[27] Pfeifer, K., Haasemann, M., Gamulin, V., Bretting, H., Fahrenholz, F.,
and Muller, W. E. G. (1993). S-type lectins occur also in invertebrates:
high conservation of the carbohydrate recognition domain in the lectin
genes from the marine sponge Geodia cydonium. Glycobiology, 3, 179-
184.
[28] Schroder, H. C., Boreiko, A., Korzhev, M., Tahir, M. N., Tremel, W.,
Eckert, C., Ushijima, H., Muller, I. M., and Muller, W. E. G. (2006). Coexpression
and functional interaction of silicatein with galectin: matrixguided
formation of siliceous spicules in the marine demosponge,
Suberites domuncula. J Biol Chem, 281, 12001-12009.
[29] Miarons, P. B., and Fresno, M. (2000). Lectins from tropical sponges;
purification and characterization of lectins from genus Aplysina. J Biol
Chem, 275, 29283-29289.
[30] Kurata, O., and Hatai, K. (2002). Activation of carp leukocytes by a
galactose-binding protein from Aphanomyces piscicida. Dev Comp
Immunol, 26, 461-469.
[31] Oliveira, M. D. L., Andrade, C. A. S., Magalhaes, N. S. S., Coelho, L. C.
B. B., etal. (2008). Purification of a lectin from Eugenia uniflora L.
seeds and its potential antibacterial activity. Lett Appl Microbiol, 46,
371-376.
[32] Broekaert, W. F., Van, P. J., Leyn, F., Joos, H., and Peumans, W. (1998).
A chitin-binding lectin from stinging rettle rhizomes with antifungal
properties. Science, 245, 1100-1102.
[33] Dhainaut, A., and Scaps, P. (2001). Immune defense and biological
responses induced by toxics in Annelida. Can J Zool, 79, 233-253.
[34] Paul, V. J., and Puglisi, M. P. (2004). Chemical mediation of interactions
among marine organisms. Nat Prod Rep, 21, 189-209.
[35] Kelly, S. R., Garo, E., Jensen, P. R., Fenical, W., and Pawlik, J. R.
(2005). Effects of caribbean sponge secondary metabolites on bacterial
surface colonization. Aquat Microb Ecol, 40, 191-203.