Hydrogen Permeability of BSCY Proton-Conducting Perovskite Membrane

Perovskite-type membrane Ba0.5Sr0.5Ce0.9Y0.1O3-δ (BSCY) was successfully synthesized by liquid citrate method. The hydrogen permeation and stability of BSCY perovskite-type membranes were studied at high temperatures. The phase structure of the powder was characterized by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to characterize microstructures of the membrane sintered under various conditions. SEM results showed that increasing in sintering temperature, formed dense membrane with clear grains. XRD results for BSCY membrane that sintered in 1150 °C indicated single phase perovskite structure with orthorhombic configuration, and SEM results showed dense structure with clear grain size which is suitable for permeation tests. Partial substitution of Sr with Ba in SCY structure improved the hydrogen permeation flux through the membrane due to the larger ionic radius of Ba2+. BSCY membrane shows high hydrogen permeation flux of 1.6 ml/min.cm2 at 900 °C and partial pressure of 0.6.





References:
[1] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, "Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production", Solid State Ionics, 1981, 3/4, 359.
[2] Bonanos, N. J.” Transport study of the solid electrolyte BaCe0.9Gd0.1O2.95 at high temperatures" Phys. Chem. Solids 1993; 54: 867.
[3] H. Hayashi, H. Inaba, M. Matsuyama, N.G. Lan, M. Dokiya, H. Tagawa, Structural consideration on the ionic conductivity of perovskite-type oxides. Solid State Ionics 1999; 122: 1–15.
[4] S. Zhan, X. Zhu, Baofeng Ji, Weiping Wang, Xiaoliang Zhang, JiboWang, Weishen Yang, Liwu Lin, Preparation and hydrogen permeation of SrCe0.95Y0.05O3−δ asymmetrical membranes, Journal of Membrane Science 2009; 340: 241–248
[5] C.-L. Tsai, M. Kopczyk, R.J. Smith, V.H. Schmidt, “Preparation of BaCe0.9Yb0.1O3-δ asymmetrical membrane for hydrogen separation at high temperatures”, Solid State Ionics, 2010, 181, 1083.
[6] Q. Chen, A. Braun, S. Yoon, N. Bagdassarov, T. Graule, “Effect of lattice volume and compressive strain on the conductivity of BaCeY-oxide ceramic proton conductors”, Journal of the European Ceramic Society 2011; 31: 2657–2661.
[7] A. Braun, A. Ovalle, V. Pomjakushin, A. Cervellino, S. Erat, WC. Stolte, et al. Yttrium and hydrogen superstructure and correlation of lattice expansion and proton conductivity in the BaZr0.9Y0.1O2.95 proton conductor. Appl Phys Lett 2009; 95(22):224103–13.
[8] Y. Teraoka, T. Nobunaga, N. Yamazoe, Effect of Cation Substitution on the Oxygen Semipermeability of Perovskite Oxides. Chem. Lett. 1988, 503.
[9] H. Wang, R. Wang, D.T. Liang and W.S. Yang: J. “Oxygen permeation performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane after surface modification”, Membr. Sci., 2004, 243, 405.
[10] J. Zhang, H. Zhao, Y. Li, N. Xu, W. Ding, X. Lu, F. Li, Effects of iron content on the structural evolution electrical properties and thermochemical stability of BaCo0.9-xFexNb0.1O3-δ ceramic membrane, international journal of hydrogen energy 35 (2010) 814 – 820.
[11] L. Tan, X. Gu, L. Yang, L. Zhang, C. Wang, N. Xu," Influence of sintering condition on crystal structure, microstructure, and oxygen permeability of perovskite-related type Ba0.8Sr0.2Co0.8Fe0.2O3−δ membranes", Sep. Purif. Technol., 2003, 32, 307.
[12] L. Tan, X. Gu, L. Yang, W. Jin, L. Zhang, N. Xu, J.” Influence of powder synthesis methods on microstructure and oxygen permeation performance of Ba0.5 Sr0.5 Co0.8 Fe 0.2 O3− δ perovskite-type membranes”, Membr. Sci., 2003, 212, 157.
[13] C. Zuo, T.H. Lee, S.E. Dorris, U. Balachandran, Meilin Liu, Composite Ni–Ba(Zr0.1Ce0.7Y0.2)O3 membrane for hydrogen separation, Journal of Power Sources 159 (2006) 1291–1295.
[14] J. Guan, Dorris SE, U. Balachandran, ML. Liu, “Transport properties of SrCe0.95Y0.05O and its application for hydrogen separation”, Solid State Ionics 1998.
[15] H. Iwahara, H.Uchida, K.Morimoto, “Proton-Conducting Solid Oxide Fuel Cells with Yttrium-Doped Barium Zirconate for Direct Methane Operation”, J. Electrochem. Soc. 1990; 137: 462.