Formation of Volatile Iodine from Cesium Iodide Aerosols: A DFT Study

Periodic DFT calculations were performed to study the chemistry of CsI particles and the possible release of volatile iodine from CsI surfaces for nuclear safety interest. The results show that water adsorbs at low temperature associatively on the (011) surface of CsI, while water desorbs at higher temperatures. On the other hand, removing iodine species from the surface requires oxidizing the surface one time for each removed iodide atom. The activation energy of removing I2 from the surface in the presence of two OH is 1,2 eV.





References:
[1] J. McFarlane, J. C. Wren, and R. J. Lemire, “Chemical Speciation of Iodine Source Term to Containment,” Nucl. Technol., vol. 138, no. 2, pp. 162–178, May 2002.
[2] D. C. P. D. Le Systeme, “Kinetics of Iodine and Cesium Reactions in the Candu Reactor Primary Heat Transport System under Accident Conditions,” 1983.
[3] M. Sudolská, L. Cantrel, and I. Černušák, “Microhydration of caesium compounds: Cs, CsOH, CsI and Cs2I2 complexes with one to three H2O molecules of nuclear safety interest,” J. Mol. Model., vol. 20, no. 4, Apr. 2014.
[4] M. Badawi, B. Xerri, S. Canneaux, L. Cantrel, and F. Louis, “Molecular structures and thermodynamic properties of 12 gaseous cesium-containing species of nuclear safety interest: Cs2, CsH, CsO, Cs2O, CsX, and Cs2X2 (X=OH, Cl, Br, and I),” J. Nucl. Mater., vol. 420, no. 1–3, pp. 452–462, Jan. 2012.
[5] F.-Z. Roki, “Etude de la cinétique et de la thermodynamique des systèmes réactionnels (XIOH) par spectrométrie de masse haute température,” Institut National Polytechnique de Grenoble-INPG, 2009.
[6] E. H. P. Cordfunke and R. J. M. Konings, “Thermochemical data for reactor materials and fission products,” 1990.
[7] M. J. Rossi, “Heterogeneous Reactions on Salts,” Chem. Rev., vol. 103, no. 12, pp. 4823–4882, Dec. 2003.
[8] B. J. Finlayson-Pitts, “The Tropospheric Chemistry of Sea Salt: A Molecular-Level View of the Chemistry of NaCl and NaBr,” Chem. Rev., vol. 103, no. 12, pp. 4801–4822, Dec. 2003.
[9] M. Bruno, D. Aquilano, L. Pastero, and M. Prencipe, “Structures and Surface Energies of (100) and Octopolar (111) Faces of Halite (NaCl): an Ab initio Quantum-Mechanical and Thermodynamical Study,” Cryst. Growth Des., vol. 8, no. 7, pp. 2163–2170, Jul. 2008.
[10] M. Bruno, D. Aquilano, and M. Prencipe, “Quantum-Mechanical and Thermodynamical Study on the (110) and Reconstructed (111) Faces of NaCl Crystals,” Cryst. Growth Des., vol. 9, no. 4, pp. 1912–1916, Apr. 2009.
[11] Y. Yang, S. Meng, and E. G. Wang, “Water adsorption on a NaCl (001) surface: A density functional theory study,” Phys. Rev. B, vol. 74, no. 24, Dec. 2006.
[12] P. Cabrera-Sanfelix, S. Holloway, and G. R. Darling, “Monolayer adsorption of water on NaCl(100),” Appl. Surf. Sci., vol. 254, no. 1, pp. 87–91, Oct. 2007.
[13] G. Kresse, M. Marsman, and J. Furthm¨uller, “VASP the Guide.” 2015.
[14] J. Hafner, “Ab-initio simulations of materials using VASP: Density-functional theory and beyond,” J. Comput. Chem., vol. 29, no. 13, pp. 2044–2078, Oct. 2008.
[15] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B, vol. 59, no. 3, p. 1758, 1999.
[16] John P. Perdew, Kieron Burke, and Matthias Ernzerhof, “Generalized Gradient Approximation Made Simple.pdf,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, 1996.
[17] G. Henkelman, B. P. Uberuaga, and H. Jónsson, “A climbing image nudged elastic band method for finding saddle points and minimum energy paths,” J. Chem. Phys., vol. 113, no. 22, p. 9901, 2000.
[18] G. Henkelman and H. Jónsson, “Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points,” J. Chem. Phys., vol. 113, no. 22, pp. 9978–9985, 2000.
[19] S. Satpathy, “Electron energy bands and cohesive properties of CsCl, CsBr, and CsI,” Phys. Rev. B, vol. 33, no. 12, p. 8706, 1986.