Electrochemical Performance of Carbon Nanotube Based Supercapacitor

Carbon nanotube is one of the most attractive materials
for the potential applications of nanotechnology due to its excellent
mechanical, thermal, electrical and optical properties. In this paper we
report a supercapacitor made of nickel foil electrodes, coated with
multiwall carbon nanotubes (MWCNTs) thin film using
electrophoretic deposition (EPD) method. Chemical vapor deposition
method was used for the growth of MWCNTs and ethanol was used as
a hydrocarbon source. High graphitic multiwall carbon nanotube was
found at 750oC analyzing by Raman spectroscopy. We observed the
electrochemical performance of supercapacitor by cyclic
voltammetry. The electrodes of supercapacitor fabricated from
MWCNTs exhibit considerably small equivalent series resistance
(ESR), and a high specific power density. Electrophoretic deposition
is an easy method in fabricating MWCNT electrodes for high
performance supercapacitor.





References:
[1] A. Oberlin, M. Endo and T. Koyama, “Filamentous growth of carbon
through benzene decomposition”, Journal of Crystal Growth, vol. 32, pp.
335, January 1976.
[2] S. Iijima, “Helical microtubes of graphitic carbon”, Nature, vol. 354,
pp.56-58, November 1991.
[3] S. Iijima and T. Ichihashi, “Single-Shell Carbon Nanotubes of 1-nm
Diameter”, Nature, vol. 363, pp.603-605, June 1993.
[4] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J.
Vazquez and R. Beyers, “Cobalt-catalysed growth of carbon nanotubes
with single-atomic-layer walls”, Nature, vol. 363, pp.605-607, June 1993.
[5] Q. Ngo, B. A.Cruden, A. M. Cassell, G. Sims, M. Meyyappan, J. Li and
C.Y.Yang, “Thermal Interface Properties of Cu-Filled Vertically Aligned
Carbon Nanofiber Arrays”, Nano Letters, vol. 4, pp. 2403-2407,
December 2004.
[6] A. P. Graham, G.S. Duesberg, R.V. Seidel, M. Liebau, E.Unger,
W.Pamler, F. Kreupl, and W. Hoenlein, “Carbon Nanotubes for
Microelectronics”, Small, vol. 1, pp.382-390, April 2005.
[7] O. M. Kuttel, O. Groening, C. Emmenegger and L. Schlapbach, “Electron
Field Emission From Phase Pure Nanotube Films Grown in a
Methane/Hydrogen Plasma”, Applied Physics Letters, vol. 73,
pp.2113-2115, October 1998.
[8] J. Li, Q. Ye, A. Cassell, H. T. Ng, R. Stevens, J. Han and M. Meyyappan,
“Bottom-up approach for carbon nanotube interconnects”, Applied
Physics Letters, vol. 82, pp.2491-2493, April 2003.
[9] J. K.. Kasi, A. K. Kasi, M. Bokhari, N. Afzulpurkar, “Synthesis of Unique
Structures of Carbon Nanotube at Anodic Aluminum Oxide Template” Applied Mechanics and Materials, vol. 421, pp. 319-323, September,
2013.
[10] M.A. Ermakova, D.Y. Ermakov and G.G. Kuvshinov, “Effective catalysts
for direct cracking of methane to produce hydrogen and filamentous
carbon: Part I. Nickel catalysts”, Applied Catalysis A: General, vol. 201,
pp.61-70, June 2000.
[11] N.M. Rodriguez, A. Chambers and R.T.K. Baker, “Catalytic engineering
of carbon nanostructures”, Langmuir, vol. 11, pp. 3862-3866, October
1995.
[12] N.M. Rodriguez, M. S. Kim, F. Fortin, I. Mochida and R.T.K. Baker,
“Carbon deposition on iron–nickel alloy particles”, Applied Catalysis A:
General, vol. 48, pp.265-282, January 1997.
[13] A. K. Kasi, M.W. Ashraf, J.K. Kasi, S. Tayyaba and N. Afzulpurkar,
“Low cost nano-membrane fabrication and electro-polishing system”,
World Academy of Science, Engineering and Technology, vol. 64,
pp.56-58, April 2010.
[14] M. Hasan, A. K. Kasi, J. K. Kasi and N. Afzulpurkar, “Anodic aluminum
oxide (AAO) to AAO bonding and their application for fabrication of 3D
microchannel”, Nanoscience and Nanotechnology Letters, vol. 4, pp.
569-573, December 2012.
[15] H. Masuda and K. Fukuda, “Ordered Metal Nanohole Arrays made by two
step Replication of Honeycomb structures of Anodic Alumina”, Science,
vol. 268, pp.1466-1468, June 1995.
[16] J. K. Kasi, A. K. Kasi, N. Afzalpurkar, M. Hasan, S. Pratontep and A.
Poyai, “Fabrication of three dimensional AAO structures”, Nanoscience
and Nanotechnology Letters, vol. 4, pp. 537-543, December 2012.
[17] M. K. McQuaig Jr., A. Toro, W. Van Geertruyden and W.Z. Misiolek,
“The effect of high temperature heat treatment on the structure and
properties of anodic aluminum oxide”, Journal of Material Science, vol.
46, pp.243-253, January 2011.
[18] A. K. Kasi, J. K. Kasi, N. Afzulpurkar, E. Bohez and A. Tuantranont,
“Continuous voltage detechement and etching (CVDE) technique for
fabrication of nano-porous AAO tubular membrane”, Nanoscience and
Nanotechnology Letter, vol. 4, pp. 530-536, December 2012.
[19] C. R. Martin, “Nanomaterials: A Membrane-Based Synthetic Approach”,
Science, vol. 266, pp.1961-1966, December 1994.
[20] A.K. Kasi, N. Afzulpurkar, J.K. Kasi, A. Tuantranont and P. Dulyaseree,
“Utilization of cracks to fabricate anodic aluminum oxide nanoporous
tubular and rectangular membrane”, Journal of Vacuum Science and
Technology: B, vol. 29, pp.D1071-D1077, July 2011.
[21] M. Hughes, M. S. P. Shaffer, A. C. Renouf, C. Singh, G. Z. Chen, D. J.
Fray, A. H. Windle, “Electrochemical Capacitance of Nanocomposite
Films Formed by Coating Aligned Arrays of Carbon Nanotubes with
Polypyrrole”, Advanced Materials, vol. 14,pp. 382- 385, March 2002.
[22] M. Hughes, G. Z. Chen, M. S. Shaffer, D. J. Fray, A. H. Windle,
“Electrochemical Capacitance of a Nanoporous Composite of Carbon
Nanotubes and Polypyrrole”, Chemistry of Materials, vol. 14,
pp.1610–1613, February 2002.
[23] B. J. Yoon, S. H. Jeong, K. H. Lee, H. S. Kim, C. G. Park, and J. H. Han,
"Electrical properties of electrical double layer capacitors with integrated
carbon nanotube electrodes," Chemical Physics Letters, vol. 388, pp.
170-174, April 2004.
[24] C. Nutzenadel, A. Zuttel, D. Chartouni, L Schlapbach, “Electrochemical
storage of hydrogen in nanotube materials”, Electrochemical and
Solid-States Letters, vol. 2, pp. 30-32, January 1999.
[25] A. S. Claye, J. E. Fischer, C. B. Huffman, A. G. Rinzler and R. E. Smalley,
“Solid-State Electrochemistry of the Li Single Wall Carbon Nanotube
System” Journal of Electrochemical Society, vol.147, pp. 2845–2852,
April 2000.
[26] H. C. Shin, M. L. Liu, B. Sadanadan and A. M. Rao, “ Electrochemical
Insertion of Lithium into Multi-Walled Carbon Nanotubes Prepared by
Catalytic Decomposition”, Journal of Power Sources, vol. 112,
pp.216-221. October 2002.
[27] C. M. Niu, E. K. Sichel, R. Hoch, D. Moy and H. Tennent, “High Power
Electrochemical Capacitors Based on Carbon Nanotube Electrodes”,
Applied Physics Letters, vol. 70, pp. 1480-1482, January 1997.
[28] K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S.
Lee and Y. H. Lee, “Electrochemical Properties of High-Power
Supercapacitors Using Single-Walled Carbon Nanotube Electrodes”,
Advanced Functional Materials, vol. 11, pp. 387–392, October 2001.
[29] B.J. Yoon, S.H. Jeong, K.H. Lee, H.S. Kim, C.G. Park and J.H. Han,
“Electrical properties of electrical double layer capacitors with integrated
carbon nanotube electrodes”, Chemical Physics Letter, vol. 388, pp.
170–174, April 2004.
[30] A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G.
Dresselhaus, M. S. Dresselhaus, “Structural ( n,m) Determination of
isolated single-wall carbon nanotubes by resonant Raman scattering”,
Physical Review Letter, vol. 86, pp. 1118-1121, February 2001.