Electrochemical Performance of Al-Mn2O3 Based Electrode Materials

Manganese oxide is being recently used as electrode material for rechargeable batteries. In this study, Al incorporated Mn2O3 compositions were synthesized to study the effect of Al doping on electrochemical performance of host material. Structural studies were carried out using X-ray diffraction analysis to confirm the phase stability and explore the lattice parameters, crystallite size, lattice strain, density and cell volume. Morphology and composition were analyzed using field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Dynamic light scattering analysis was performed to observe the average particle size of the compositions. FTIR measurements exhibit the O-Al-O and O-Mn-O and Al-O bonding and with increasing the concentration of Al, the vibrational peaks of Mn-O become sharper. An enhanced electrochemical performance was observed in compositions with higher Al content.





References:
[1] C. Liu, F. Li, L.P. Ma, H.M. Cheng, Adv. Mater. 22 (2010) E28-E62.
[2] M.S. Whittingham, MRS Bull. 33 (2008) 411-419.
[3] B. Scrosati, J. Hassoun, Y.K. Sun, Energy Environ. Sci. 4 (2011) 3287-3295.
[4] M. Broussely, P. Biensan, B. Simon, Electrochim. Acta. 45 (1999) 3-22.
[5] P. Kristin, A.S. Vijay, H.H. Laurence, H. Yoyo, S.M. Ying, V.V. Anton, S. Venkat, K. Robert, C. Gerbrand, J. Phys. Chem. Lett. 1 (2010) 1176-1180.
[6] H.B. Wu, J.S. Chen, H.H. Hng, X.W. Lou, Nanoscale 4 (2012) 2526-2542.
[7] A.C. Dillon, L.A. Riley, Y.H. Kim, C. Ban, D.T. Gillaspie, A. Pesaran, S.H. Lee, Nanostructured Metal Oxide Anodes, NREL, DOE Merit Review (2009).
[8] A.A. Salvatore, P. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijk, Nat. Mater. 4 (2005) 366-377.
[9] D. Yang, J. Power Sources 228 (2013) 89-96.
[10] H. Zhimi, X. Xiao, C. Chen, T. Li, L. Huang, C. Zhang, J. Su, L. Miao, J. Jiang, Y. Zhang, J. Zhou, Nano Energy 11 (2015) 226-234.
[11] L.D. Burke, J.F. Healy, J. Electroanal. Chem. 124 (1981) 327-332.
[12] J.E. Arthur, J.M. Meredith, N.R. Philip, T.B. Alexis, T.D. Tilley, J. Phys. Chem. C 113 (2009) 15068-15072.
[13] J.B. Wu, Y. Lin, X.H. Xia, J.Y. Su, Q.Y. Shi, Electrochim. Acta 56 (2011) 7163-7170.
[14] X.H. Huang, J.P. Tu, B. Zhang, C.Q. Zhang, Y. Li, Y.F. Yuan, H.M. Wu, J. Power sources 161 (2006) 541-544.
[15] J.Y. Xiang, J.P. Tu, X.H. Huang, Y.Z. Yang, J. Solid State Electrochem. 12 (2008) 941-945.
[16] F. Li, Y.X. Zhang, M. Huang, Y. Xing, L.L. Zhang, Electrochim. Acta 154 (2015) 329- 337.
[17] Z.K. Ghouri, M.S. Akhtar, A. Zahoor, A.A. Barakat, W. Han, M. Park, B. Pant, P.S. Saud, C.H. Lee, H.Y. Kim, J. Alloys compd 642 (2015) 210-215.
[18] A.A. Salvatore, P. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijk, Nat. Mater. 4 (2015) 366-377.
[19] N.R. Ravinder, G.R. Ramana, J. Power Sources 124 (2003) 330-337.
[20] J Kuei, W.C. Hseieh, W.T. Tsai, J. Alloys Compd. 461 (2008) 667-674.
[21] M.T. Lee, J.K. Chang, Y.T. Hsieh, W.T. Tsai, J. Power Sources, 185 (2008) 1550-1556.
[22] D.P. Dubal, A.D. Jagadale, S.V. Patil, C.D. Lokhande, MRS Bull. 47 (2012) 1239-1245.
[23] J.M. Luo, B. Gao, X Ghang, MRS Bull. 43 (2008) 1119-1125.
[24] C.S. Ferreria, R.R. Passos, L.A. Pocrifka, J. Power Sources 271 (2014) 104-107.
[25] T.C. Wen, H.M. Kang, Electrochim. Acta 43 (1998) 1729-1745.
[26] D.L. Fang, Z.D. Chen, B.C. Wu, Y. Yan, C.H. Zheng, Mater. Chem. Phys. 128 (2011) 311- 316.
[27] G. Adylov, V. Voronov, L. Sigalov, Inorg. Mater. 23 (1988) 1867-1870.
[28] R.V. Sagar, S. Buddhudu, Spectrochim. Acta A 75 (2010) 1218-1222.
[29] N. Varghese, M. Hariharan, D.A.B. Cherian, D.P.V. Sreenivasan, J. Paul, A.K.A. Antony, Int. J. Sci. Res. Pub. 4 (2014) 2250-3153.
[30] K. Lipping, M. Zhang, Z.H. Liu, K. Ooi, Spectrochim. Acta A 67 (2007) 864-869.
[31] S.A. Hosseini, A. Niaei, D. Salari, Open J. Phys. Chem. 1 (2011) 23-27.
[32] R. Ma, M. Wang, P. Tao, Y. Wang, C. Cao, G. Shan, S. Yang, L. Xi, J.C.Y. Chung, Z. Lu, J. Mate. Chem. A 1 (2013) 15060-15067.
[33] L. Hu, Y. Sun, F. Zhang, Q Chen, J. Alloys Compd. 576 (2013) 86-92.