Effect of Indole-3-Acetic Acid on Arsenic Translocation in Agricultural Crops

The problem of agricultural-soil pollution is closely linked to the production of ecologically pure foodstuffs and to human health. An important task, therefore, is to rehabilitate agricultural soils with the help of state-of-the-art biotechnologies, based on the use of metal-accumulating plants. In this work, on the basis of literature data and the results of prior research from this laboratory, plants were selected for which the growing technology is well developed and which are widespread locally: sugar sorghum (Sorghum saccharatum), sudangrass (Sorghum sudanense (Piper.) Stapf.), and sunflower (Helianthus annuus L.). I report on laboratory experiments designed to study the influence of synthetic indole-3- acetic acid and the extracellular indole-3-acetic acid released by the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245 on growth of and arsenic accumulation by these plants.

Authors:



References:
[1] H. M. Anawar, J. Akai, K. Komaki, H. Terao, T. Yoshioka, T. Ishizuka,
S. Safiullah, and K. Kato, "Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes", J.
Geochem. Explor., vol. 77, pp. 109-131, Mar. 2003.
[2] E. A. Murphy and M. Aucott, "An assessment of the amounts of arsenical pesticides used historically in a geographical area", Sci. Total Environ., vol. 218, no. 2, pp. 89-101, July 1998.
[3] D. Sarkar and R. Datta, "Arsenic fate and bioavailability in two soils
contaminated with sodium arsenate pesticide: an incubation study", Bull.
Environ. Contam. Toxicol., vol. 72, pp. 240-247, Feb. 2004.
[4] M. Mkandawire and E. G. Dudel, "Accumulation of arsenic in Lemna
gibba L. (duckweed) in tailing waters of two abandoned uranium mining
sites in Saxony, Germany", Sci. Total Environ., vol. 336, pp. 81-89, Jan.2005.
[5] Ye. V. Lyubun, P. V. Kosterin, E. A. Zakharova, A. A. Shcherbakov,
and E. E. Fedorov, "Arsenic-contaminated soils: phytotoxicity studies
with sunflower and sorghum", J. Soils Sediment, vol. 2, no. 3, pp. 143-
147, 2002.
[6] Yu. A. Potatueva, V. G. Ignatov, and E. A. Karpova, "Effect of
phosphorus fertilizers on the content of mobile arsenic species in soils",
Agrokhimiya, no. 1, pp. 31-40, Jan. 2007 (in Russian).
[7] B. Booth, "Cancer rates attributable to arsenic in rice vary globally",
Environ. Sci. Technol., vol. 43, no. 5, pp. 1243-1244, Mar. 2009.
[8] K. Shah and J. M. Nongkynrih, "Metal hyperaccumulation and
bioremediation", Biol. Plant., vol. 51, no. 4, pp. 618-634, Dec. 2007.
[9] O. V. Singh, S. Labana, G. Pandey, R. Budhiaraja, and R. K. Jain,
"Phytoremediation: an overview of metallic ion decontamination from
soil", Appl. Microbiol. Biotechnol., vol. 61, pp. 405-412, Jun. 2003.
[10] D. E. Salt, R. D. Smith, and I. Raskin, "Phytoremediation", Annu. Rev. Plant Physiol. Plant Mol. Biol., vol. 49, pp. 643-668, Jun. 1998.
[11] E. Meers, A. Ruttens, M. Hopgood, D. Samson, and F. Tack,
"Comparison of EDTA and EDDS as potential soil amendments for
enhanced phytoextraction of heavy metals", Chemosphere, vol. 58, pp.
1011-1022, Feb. 2005.
[12] X.-Z. Yu and J.-D. Gu, "The role of EDTA in phytoextraction of
hexavalent and trivalent chromium by two willow trees", Ecotoxicology,
vol. 17, pp. 143-152, Apr. 2008.
[13] M. S. Khan, A. Zaidi, P. Ahmad Wani, and M. Oves, "Role of plant
growth promoting rhizobacteria in the remediation of metal
contaminated soils", Environ. Chem. Lett., vol. 7, no 1, pp. 1-19, Feb.2009.
[14] D. K. Jain and D. G. Patriquin, "Characterization of a substance
produced by Azospirillum which causes branching of wheat root hairs",
Can. J. Microbiol., vol. 31, pp. 206-210, 1985.
[15] S. Spaepen, S. Dobbelaere, A. Croonenborghs, and J. Vanderleyden,
"Effects of Azospirillum brasilense indole-3-acetic acid production on
inoculated wheat plants", Plant Soil, vol. 312, no. 1-2, pp. 15-23, Nov.2008.
[16] Ye. V. Lyubun, A. Fritzsche, M. P. Chernyshova, E. G. Dudel, and E. E.
Fedorov, "Arsenic transformation by Azospirillum brasilense Sp245 in
association with wheat (Triticum aestivum L.) roots", Plant Soil, vol.
286, no. 12, pp. 219-227, Aug. 2006.
[17] V. L. D. Baldani, J. I. Baldani, and J. Döbereiner, "Inoculation of fieldgrown
wheat (Triticum aestivum) with Azospirillum spp.", Brasil. Biol.
Fertil. Soils, vol. 4, pp. 37-40, May 1987.
[18] W. Zimmer and H. Bothe, "The phytohormonal interactions between
Azospirillum and wheat", Plant Soil, vol. 110, no. 2, pp. 239-247, Aug.1988.
[19] M. S. Peek and I. N. Forseth, "Non-destructive estimation of lateral root
distribution in an aridland perennial", Plant Soil, vol. 273, no. 1-2, pp.
211-217, Jun. 2005.
[20] E. A. Zakharova, A. A. Shcherbakov, V. V. Brudnik, N. G. Skripko, N.
Sh. Bulkhin, and V. V. Ignatov, "Biosynthesis of indole-3-acetic acid in
Azospirillum brasilense: insights from quantum chemistry", Eur. J.
Biochem., vol. 259, no. 3, pp. 572-576, Feb.1999.
[21] E. A. Zakharova, A. D. Iosipenko, and V. V. Ignatov, "Effect of watersoluble
vitamins on the production of indole-3-acetic acid by
Azospirillum brasilense", Microbiol. Res., vol. 155, no. 3, pp. 209-214, Feb. 2000.