Constructal Enhancement of Fins Design Integrated to Phase Change Materials

The latent heat thermal energy storage system is a
thrust area of research due to exuberant thermal energy storage
potential. The thermal performance of PCM is significantly
augmented by installation of the high thermal conductivity fins. The
objective of the present study is to obtain optimum size and location
of the fins to enhance diffusion heat transfer without altering overall
melting time. Hence, the constructal theory is employed to eliminate,
resize, and re-position the fins. A numerical code based on conjugate
heat transfer coupled enthalpy porosity approached is developed to
solve Navier-Stoke and energy equation.The numerical results show
that the constructal fin design has enhanced the thermal performance
along with the increase in the overall volume of PCM when
compared to conventional. The overall volume of PCM is found to be
increased by half of total of volume of fins. The elimination and repositioning
the fins at high temperature gradient from low
temperature gradient is found to be vital.




References:
[1] Zalba, B., Marín, J. M., Cabeza, L.F. and Mehling, H., 2003. Review on
thermal energy storage with phase change: materials, heat transfer
analysis and applications. Applied thermal engineering, 23(3), pp.251-
283.
[2] Zhang, Y. and Faghri, A., 1996. Heat transfer enhancement in latent heat
thermal energy storage system by using the internally finned tube.
International Journal of Heat and Mass Transfer, 39(15), pp.3165-3173.
[3] Velraj, R. V. S. R., Seeniraj, R. V., Hafner, B., Faber, C. and Schwarzer,
K., 1999. Heat transfer enhancement in a latent heat storage system.
Solar energy, 65(3), pp.171-180.
[4] Arce, P., Castellón, C., Castell, A. and Cabeza, L. F., 2012. Use of
microencapsulated PCM in buildings and the effect of adding awnings.
Energy and Buildings, 44, pp.88-93.
[5] Ho, C. J., Chou, W. L. and Lai, C. M., 2014. Application of a watersaturated
MEPCM-PV for reducing winter chilling damage on aqua
farms. Solar Energy, 108, pp.135-145.
[6] Choi, J. C. and Kim, S. D., 1992. Heat-transfer characteristics of a latent
heat storage system using MgCl2• 6H2O. Energy, 17(12), pp.1153-
1164.
[7] Kim, S. and Drzal, L. T., 2009. High latent heat storage and high
thermal conductive phase change materials using exfoliated graphite
nano platelets. Solar Energy Materials and Solar Cells, 93(1), pp.136-
142.
[8] Dutil, Y., Rousse, D. R., Salah, N. B., Lassue, S. and Zalewski, L., 2011.
A review on phase-change materials: mathematical modeling and
simulations. Renewable and sustainable Energy reviews, 15(1), pp.112-
130.
[9] Yang, X., Lu, Z., Bai, Q., Zhang, Q., Jin, L. and Yan, J., 2017. Thermal
performance of a shell-and-tube latent heat thermal energy storage unit:
Role of annular fins. Applied Energy, 202, pp.558-570.
[10] Jmal, I. and Baccar, M., 2015. Numerical study of PCM solidification in
a finned tube thermal storage including natural convection. Applied
Thermal Engineering, 84, pp.320-330.
[11] Gharebaghi, M. and Sezai, I., 2007. Enhancement of heat transfer in
latent heat storage modules with internal fins. Numerical Heat Transfer,
Part A: Applications, 53(7), pp.749-765.
[12] Lacroix, M. and Benmadda, M., 1997. Numerical simulation of natural
convection-dominated melting and solidification from a finned vertical
wall. Numerical Heat Transfer, Part A Applications, 31(1), pp.71-86.
[13] Rathod, M. K. and Banerjee, J., 2015. Thermal performance
enhancement of shell and tube Latent Heat Storage Unit using
longitudinal fins. Applied thermal engineering, 75, pp.1084-1092.
[14] Kamkari, B. and Shokouhmand, H., 2014. Experimental investigation of
phase change material melting in rectangular enclosures with horizontal
partial fins. International Journal of Heat and Mass Transfer, 78, pp.839-
851.
[15] Voller, V. R. and Prakash, C., 1987. A fixed grid numerical modelling
methodology for convection-diffusion mushy region phase-change
problems. International Journal of Heat and Mass Transfer, 30(8),
pp.1709-1719.
[16] Brent, A. D., Voller, V. R. and Reid, K. T. J., 1988. Enthalpy-porosity
technique for modeling convection-diffusion phase change: application
to the melting of a pure metal. Numerical Heat Transfer, Part A
Applications, 13(3), pp.297-318.
[17] Carman, P. C., 1937. Fluid flow through granular beds. Transactions-
Institution of Chemical Engineeres, 15, pp.150-166.
[18] Kheirabadi, A. C. and Groulx, D., 2015. The effect of the mushy-zone
constant on simulated phase change heat transfer. In ICHMT Digital
Library Online. Begel House Inc.
[19] Shmueli, H., Ziskind, G. and Letan, R., 2010. Melting in a vertical
cylindrical tube: numerical investigation and comparison with
experiments. International Journal of Heat and Mass Transfer, 53(19),
pp.4082-4091.
[20] Augspurger, M. and Udaykumar, H. S., 2016. A Cartesian grid solver
for simulation of a phase-change material (PCM) solar thermal storage
device. Numerical Heat Transfer, Part B: Fundamentals, 69(3), pp.179-
196.
[21] Patankar, S. V. and Spalding, D. B., 1972. A calculation procedure for
heat, mass and momentum transfer in three-dimensional parabolic flows.
International journal of heat and mass transfer, 15(10), pp.1787-1806.
[22] Bejan, A., 1997. Constructal-theory network of conducting paths for
cooling a heat generating volume. International Journal of Heat and
Mass Transfer, 40(4), pp.799813-811816.
[23] Wang, A. H., Liang, X. G. and Ren, J. X., 2006. Constructal
enhancement of heat conduction with phase change. International
Journal of Thermophysics, 27(1), pp.126-138.
[24] Kalbasi, R. and Salimpour, M. R., 2015. Constructal design of horizontal
fins to improve the performance of phase change material rectangular
enclosures. Applied Thermal Engineering, 91, pp.234-244.
[25] Kalbasi, R. and Salimpour, M. R., 2015. Constructal design of phase
change material enclosures used for cooling electronic devices. Applied
Thermal Engineering, 84, pp.339-349.
[26] Rathod, M. K. and Banerjee, J., 2014. Experimental investigations on
latent heat storage unit using paraffin wax as phase change material.
Experimental Heat Transfer, 27(1), pp.40-55.