Characterization of Sintered Fe-Cr-Mn Powder Mixtures Containing Intermetallics

Intermetallic materials are among advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %88Ni- %10Cr and %2Mn powders were investigated using specimens produced by tube furnace sintering at 900-1300°C temperature. A composite consisting of ternary additions, a metallic phase, Fe, Cr and Mn have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %88Ni-%10Cr and %2Mn at 1300°C suggest that the best properties as 138,80HV and 6,269/cm3 density were obtained at 1300°C.




References:
[1] Buschbeck J, Opahle I, Richter M, Röβler U K, Klaer P, Kallmayer M,
Elmers H J, Jakob G, Schultz L and Fähler S 2009 Phys. Rev. Lett. 103
216101
[2] Tateyama S, Shibuta Y and Suzuki T 2010 ISIJ Int. 50 1211–6
[3] Ogawa K and Kajiwara S 2004 Phil. Mag. 84 2919R.W. Cahn, P.
Haasen, E.J. Kramer, Materials Science and Technology, Medical and
Dental Materials, vol. 14, D.F. Williams VCH Verlags, Weinheim,
1992.
[4] T. Kitamura, Snow-melting Magnetic Material Wire, in Fujikura
Technical Review (2003) p.23-25.
[5] T. Todaka, T. Kishino, M. Enokizono, Low Curie temperature material
for induction heating self-temperature controlling system, Journal of
Magnetism and Magnetic Materials 320, 2008,p. 702–707.
[6] A. Iorga et al., Thermo-sensitive magnetic properties in the alloy system
Fe-Ni-Cr, Scientific Bulletin of Politehnica Iasi, Vol. LVII (LXI) Fasc.
3, p.195-200.
[7] Calcagnotto M, Ponge D and Raabe D 2012 Metall. Mat. Trans. A 43
37–46.
[8] Gavriljuk V and Berns H 1999 High Nitrogen Steels (London).
[9] Rawers J 2008 J. Mater. Sci. 43 3618–24 Grazen, A.E., Iron Age., 183:
944(1959)
[10] M.M. Cisneros, H.F. López, H. Mancha, D. Vázquez, E. Valdés, G.
Mendoza, M. Méndez Metall. Mater. Trans. A, 33 (2002), pp. 2139–
2144.
[11] N. Nakada, N. Hirakawa, T. Tsuchiyama, S. Takaki Scr. Mater., 57
(2007), pp. 153–156.
[12] M. Sumita, T. Hanawa, S.H. Teoh Mater. Sci. Eng. C, 24 (2004), pp.
753–760.
[13] G. Balachandran, M.L. Bhatia, N.B. Ballal, P.K. Rao ISIJ Int., 41
(2001), pp. 1018–1027.
[14] S. Fréchard, A. Redjaïmia, E. Lach, A. Lichtenberger Mater. Sci. Eng.
A, 480 (2008), pp. 89–95.
[15] Liu, CT, George, EP, Sikka, VK, Deevi, SC, Stoloff, NS, Jones, RH,
Eds., Processing and Design Issues in High Temperature Materials, The
Mineral, Metals and Materials Society, 1997, pp. 139–155
[16] Prasad YVRK, Sastry DH, Deevi SC. Intermetallics 2000, 8, 1067–1074
[17] Deevi SC. Intermetallics 2000, 8, 679–685.
[18] Morsi K. Mat. Sci. Eng. A-Struct. 2001, 299, 1–15.
[19] Krasnowski M, Kulik T. Intermetallics 2007, 15, 1377–1383.
[20] Suwas S, Upadhyaya GS. Met. Mater. Process 1996, 7,225–250.
[21] P. B a ł a, Arch Metall Mater. 55, 4, 1053-1059 (2010).