Cardiac Biosignal and Adaptation in Confined Nuclear Submarine Patrol

Isolated and confined environments (ICE) present several challenges which may adversely affect human’s psychology and physiology. Submariners in Sub-Surface Ballistic Nuclear (SSBN) mission exposed to these environmental constraints must be able to perform complex tasks as part of their normal duties, as well as during crisis periods when emergency actions are required or imminent. The operational and environmental constraints they face contribute to challenge human adaptability. The impact of such a constrained environment has yet to be explored. Establishing a knowledge framework is a determining factor, particularly in view of the next long space travels. Ensuring that the crews are maintained in optimal operational conditions is a real challenge because the success of the mission depends on them. This study focused on the evaluation of the impact of stress on mental health and sensory degradation of submariners during a mission on SSBN using cardiac biosignal (heart rate variability, HRV) clustering. This is a pragmatic exploratory study of a prospective cohort included 19 submariner volunteers. HRV was recorded at baseline to classify by clustering the submariners according to their stress level based on parasympathetic (Pa) activity. Impacts of high Pa (HPa) versus low Pa (LPa) level at baseline were assessed on emotional state and sensory perception (interoception and exteroception) as a cardiac biosignal during the patrol and at a recovery time one month after. Whatever the time, no significant difference was found in mental health between groups. There are significant differences in the interoceptive, exteroceptive and physiological functioning during the patrol and at recovery time. To sum up, compared to the LPa group, the HPa maintains a higher level in psychosensory functioning during the patrol and at recovery but exhibits a decrease in Pa level. The HPa group has less adaptable HRV characteristics, less unpredictability and flexibility of cardiac biosignals while the LPa group increases them during the patrol and at recovery time. This dissociation between psychosensory and physiological adaptation suggests two treatment modalities for ICE environments. To our best knowledge, our results are the first to highlight the impact of physiological differences in the HRV profile on the adaptability of submariners. Further studies are needed to evaluate the negative emotional and cognitive effects of ICEs based on the cardiac profile. Artificial intelligence offers a promising future for maintaining high level of operational conditions. These future perspectives will not only allow submariners to be better prepared, but also to design feasible countermeasures that will help support analog environments that bring us closer to a trip to Mars.




References:
[1] J. Rivolier, G. Cazes, I. McCormick, "The International Biomedical Expedition to the Antarctic: psychological evaluations of the field party," From Antarctica to outer space. Springer, New York, NY, pp. 283-290, 1991.
[2] A. A. Harrison, and M. M. Connors, “Groups in exotic environments”, Advances in experimental social psychology, vol.18, Academic Press, pp. 49-87, 1984.
[3] K. Ramachandran, and F. U. Paul, “Cognitive and Psychomotor Performance in Extreme and Unusual Environment”, 2019.
[4] J. L. Brown, Sensory and perceptual problems related to space flight, vol. 872, National Academies, 1961.
[5] W. Heron, “Cognitive and physiological effects of perceptual isolation”, Sensory deprivation, pp. 6-33, 1961.
[6] L. A. Palinkas, C. J. Jeffrey, and S. B. James, "Social support and depressed mood in isolated and confined environments", Acta Astronautica, vol. 54, no 9, pp. 639-647, 2004.
[7] L. A. Palinkas, and P. Suedfeld, “Psychological effects of polar expeditions”, The Lancet, vol. 371, no 9607, pp. 153-163, 2008.
[8] N. Kanas, G. Sandal, J. E. Boyd, V. I. Gushin, D. Manzey, R. North…, N. Inoue, "Psychology and culture during long-duration space missions", Acta Astronautica, vol. 64, no 7-8, pp. 659-677, 2009.
[9] M. Basner, D. F. Dinges, D. J. Mollicone, I. Savelev, A. J. Ecker, A. Di Antonio, ... and J. P. Sutton, “Psychological and behavioral changes during confinement in a 520-day simulated interplanetary mission to mars”, PloS one, vol. 9, no 3, p. e93298, 2014.
[10] C. Shea, K. J. Slack, K. E. Keeton, L. A. Palinkas, and L. B. Leveton, “Antarctica meta-analysis: psychosocial factors related to long-duration isolation and confinement”, Final Report submitted to the NASA Behavioral Health and Performance Element, 2009.
[11] L. A. Palinkas, M. Cravalho, and D. Browner, "Seasonal variation of depressive symptoms in Antarctica", Acta Psychiatrica Scandinavica, vol. 91, no 6, pp. 423-429, 1995.
[12] L. Leveton, C. Shea, K. J. Slack, K. E. Keeton, and L. A. Palinkas, "Antarctica meta-analysis: Psychosocial factors related to long duration isolation and confinement", 2009.
[13] Q. Liu, R. L. Zhou, X. Zhao, X. P. Chen, S. G. Chen, "Acclimation during space flight: effects on human emotion”, Military Medical Research, vol. 3, no 1, pp. 15, 2016.
[14] J. H. Rohrer, Interpersonal relationships in isolated small groups, Columbia University Press: New York, NY, USA, 1961.
[15] B. B. Weybrew, "Three decades of nuclear submarine research: implications for space and Antarctic research", From Antarctica to Outer Space, Springer, New York, NY, pp. 103-114, 1991.
[16] R. L. Helmreich, and J. A. Wilhelm, "The undersea habitat as a space station analog: Evaluation of research and training potential", 1985.
[17] G. M. Sandal, I. M. Endresen, R. Vaernes, and H. Ursin, "Personality and coping strategies during submarine missions", Military Psychology, vol. 11, no 4, pp. 381-404, 1999.
[18] H. Selye, The stress of life. 1956.
[19] R. S. Lazarus, and S. Folkman, Stress, appraisal, and coping, Springer publishing company, 1984.
[20] J. F. Thayer, F. Åhs, M. Fredrikson, J. J. Sollers III, T. D. Wager, "A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health”, Neuroscience & Biobehavioral Reviews, vol. 36, no 2, pp. 747-756, 2012.
[21] N. Hjortskov, D. Rissén, A. K. Blangsted, N. Fallentin, U. Lundberg, and K. Søgaard, "The effect of mental stress on heart rate variability and blood pressure during computer work”, European journal of applied physiology, vol. 92, no 1-2, pp. 84-89, 2004.
[22] J. Taelman, S. Vandeput, A. Spaepen, and S. Van Huffel, "Influence of mental stress on heart rate and heart rate variability”, In: 4th European conference of the international federation for medical and biological engineering. Springer, Berlin, Heidelberg, pp. 1366-1369, 2009.
[23] D. E. Vigo, F. Tuerlinckx, B. Ogrinz, L. Wan, G. Simonelli, E. Bersenev, ... and A. E. Aubert, "Circadian rhythm of autonomic cardiovascular control during Mars500 simulated mission to Mars”, Aviation, space, and environmental medicine, vol. 84, no 10, pp. 1023-1028, 2013.
[24] M. Yuan, M. A. Custaud, Z. Xu, J. Wang, M. Yuan, C. Tafforin, ... and G. Gauquelin-Koch, “Multi-system adaptation to confinement during the 180-day controlled ecological life support system (CELSS) experiment”, Frontiers in physiology, vol. 10, pp. 575, 2019.
[25] L. L. Hourani, M. I. Davila, J. Morgan, S. Meleth, D. Ramirez, G. Lewis, ... and M. Lane, "Mental health, stress, and resilience correlates of heart rate variability among military reservists, guardsmen, and first responders”, Physiology & Behavior, vol. 214, pp. 112734, 2020.
[26] S. W. Porges, "Vagal tone: a physiologic marker of stress vulnerability”, Pediatrics, vol. 90, no 3 Pt 2, pp. 498-504, 1992.
[27] L.A. Palinkas, "On the ice: Individual and group adaptation in Antarctica”, Online Articals, 2002.
[28] C. Tafforin, "Confinement vs. isolation as analogue environments for Mars missions from a human ethology viewpoint”, Aerospace Medicine and Human Performance, vol. 86, no 2, pp. 131-135, 2015.
[29] J. H. Earls, "Human adjustment to an exotic environment: The nuclear submarine”, Archives of General Psychiatry, vol. 20, no 1, pp. 117-123, 1969.
[30] K. S. Brasher, K. F. Sparshott, A. B. C. Weir, A. J. Day, and R. S. Bridger, "Two year follow-up study of stressors and occupational stress in submariners”, Occupational medicine, vol. 62, no 7, pp. 563-565, 2012.
[31] G. Joly, Effet d’une mission longue durée sur SNLE sur les performances neurocognitives des sous-mariniers : influence du rythme de travail et des conditions d’éclairement, Université de Bretagne Occidentale, 2013, confidential defense.
[32] G. Lamour, Evaluation des bénéfices de l’utilisation des générateurs double et de crépuscules sur la qualité du sommeil, sur l’humeur et sur la chronobiologie des sous-mariniers pendant une patrouille sur SNLE, Université de Bretagne Occidentale, 2015, confidential defense.
[33] J. Eid, B. H. Johnsen, E. R. Saus, and J. Risberg, "Stress and coping in a week-long disabled submarine exercise”, Aviation, Space, and Environmental Medicine, vol. 75, no 7, pp. 616-621, 2004.
[34] K. S. Brasher, A. B. Dew, S. G. Kilminster, and R. S. Bridger, "Occupational stress in submariners: the impact of isolated and confined work on psychological well-being”, Ergonomics, vol. 53, no 3, pp. 305-313, 2010.
[35] G. M. Sandal, G. R. Leon, and L. A. Palinkas, "Human challenges in polar and space environments”, Reviews in Environmental Science and Bio/Technology, vol. 5, no 2-3, pp. 281-296, 2006.
[36] S-N. Crosnier, Evaluation du sommeil ses sous-mariniers en situation opérationnelle sur Sous- marin Nucléaire Lanceur d’Engin : influence des Techniques d’Optimisation du Potentiel sur le Sommeil, Université de Bretagne Occidentale. 2014, confidential defense.
[37] M. Trousselard, M. Chennaoui, O. Coste, A. Rabat, P. Van Beers, and D. Leger, “Sleeping under ocean”, PlosOne, vol. 10, no 5, pp. e0126721, 2015.
[38] J. D. Nicolas, and T. Bruge-Ansel, "Contraintes subies par les équipages de sous-marins et troubles psychiatriques », Médecine et armées, vol. 39, no 2, pp. 151-156, 2011.
[39] L. A. Palinkas, J. C. Johnson, J. S. Boster, and M. Houseal, "Longitudinal studies of behavior and performance during a winter at the South Pole”, Aviation, space, and environmental medicine, vol. 69, no 1, pp. 73-77, 1998.
[40] L. A. Palinkas, E. Gunderson, A. W. Holland, C. Miller, and J. C. Johnson, "Predictors of behavior and performance in extreme environments: the Antarctic space analogue program”, Aviation, space, and environmental medicine, 2000.
[41] J. Stuster, C. Bachelard, and P. Suedfeld, "The relative importance of behavioral issues during long-duration ICE missions”, Aviation, Space, and Environmental Medicine, 2000.
[42] G. M. Sandal, "Crew tension during a space station simulation”, vol. 33, no 1, pp. 134-150, 2001.
[43] N. Kanas, V. Salnitskiy, E. M. Grund, D. S. Weiss, V. Gushin, A. Bostrom, ... and C. R. Marmar, "Psychosocial issues in space: results from Shuttle/Mir”, Gravitational and Space Research, vol. 14, no 2, 2007.
[44] A. J. Vanhove, M. N. Herian, P. D. Harms, F. Luthans, and J. A. DeSimone, "Examining psychosocial well-being and performance in isolated, confined, and extreme environments”, Washington, DC: National Aeronautics and Space Administration, 2014.
[45] R. E. Strange, and S. A. Youngman, "Emotional aspects of wintering over”, Antarctic Journal of the United States, vol. 6, no 5, pp. 255-257, 1971.
[46] R. B. Bechtel, and A. Berning, "The third-quarter phenomenon: do people experience discomfort after stress has passed?”, In: From Antarctica to outer space. Springer, New York, NY, pp. 261-265, 1991.
[47] F. J. Varela, E. Thompson, and E. Rosch, The embodied mind: Cognitive science and human experience, MIT press, 2016.
[48] P. Cowings, W. Toscano, C. DeRoshia, B. Taylor, A. L. Hines, A. Bright, and A. Dodds, "Converging indicators for assessing individual differences in adaptation to extreme environments”, Aviation, space, and environmental medicine, vol. 78, no 5, pp. B195-B215, 2007.
[49] A. S. Levine, "Psychological effects of long-duration space missions and stress amelioration techniques”, In: From Antarctica to Outer Space. Springer, New York, NY, pp. 305-315, 1991.
[50] N. Levit Binnun, and Y. Golland, "Finding behavioral and network indicators of brain vulnerability”, Frontiers in Human Neuroscience, vol. 6, pp. 10, 2012.
[51] C. Keysers, and V. Gazzola, "Expanding the mirror: vicarious activity for actions, emotions, and sensations”, Current opinion in neurobiology, vol. 19, no 6, pp. 666-671, 2009.
[52] I. Morrison, S. P. Tipper, W. L. Fenton‐Adams, and P. Bach, "“Feeling” others' painful actions: the sensorimotor integration of pain and action information”, Human brain mapping, vol. 34, no 8, pp. 1982-1998, 2013.
[53] C. D. Balaban, "Neural substrates linking balance control and anxiety”, Physiology & behavior, vol. 77, no 4-5, pp. 469-475, 2002.
[54] B. Engel-Yeger, and W. Dunn, "The relationship between sensory processing difficulties and anxiety level of healthy adults”, British Journal of Occupational Therapy, vol. 74, no 5, pp. 210-216, 2011.
[55] Y. N. Delevoye-Turrell, and C. Bobineau, "Motor consciousness during intention-based and stimulus-based actions: modulating attention resources through mindfulness meditation”, Frontiers in psychology, vol. 3, pp. 290, 2012.
[56] L. Ashendorf, J. L. Vanderslice-Barr, and R. J. McCaffrey, "Motor tests and cognition in healthy older adults”, Applied Neuropsychology, vol. 16, no 3, pp. 171-176, 2009.
[57] L. Centelles, Comprendre une interaction sociale par le corps en action : contribution de mécanisme miroir et implication dans l'autisme, Diss, 2009, confidential defense.
[58] A. J. Ayres, "Sensory integration therapy”, Sensory Integration and the Child; Western Psychological Services: Los Angeles, CA, USA, pp. 1352156, 1979.
[59] S. J. Lane, and A. C. Bundy, Kids can be kids: A childhood occupations approach, FA Davis, 2011.
[60] M. E. Anzalone, and S. J. Lane, "Sensory processing disorders”, Kids can be kids: A childhood occupations approach, pp. 437-459, 2012.
[61] M. Cabanac, “Physiological role of pleasure”, Science, vol. 172, no 4002, pp. 1103-1107, 1971.
[62] M. P. Paulus, and M. B. Stein, "Interoception in anxiety and depression”, Brain structure and Function, vol. 214, no 5-6, pp. 451-463, 2010.
[63] E. A. Phelps, and J. E. LeDoux, "Contributions of the amygdala to emotion processing: from animal models to human behavior”, Neuron, vol. 48, no 2, pp. 175-187, 2005.
[64] J. Belsky, The psychology of aging: Theory, research, and practice, Monterey, Calif.: Brooks/Cole Publishing Company, 1984.
[65] C. Stuen, "Psychosocial consequences of vision loss among the elderly”, In: Low vision ahead: proceedings of the international conference on low vision. Association for the Blind, Melbourne, pp. 149-153, 1990.
[66] C. Heine, and C. J. Browning, "Communication and psychosocial consequences of sensory loss in older adults: overview and rehabilitation directions”, Disability and rehabilitation, vol. 24, no 15, p. 763-773, 2002.
[67] L. J. Miller, M. E. Anzalone, S. J. Lane, S. A. Cermak, and E. T. Osten, "Concept evolution in sensory integration: A proposed nosology for diagnosis”, American Journal of occupational therapy, vol. 61, no 2, pp. 135-140, 2007.
[68] L. A. Palinkas, K. R. Reedy, M. Shepanek, M. Smith, M. Anghel, G. D. Steel, ... and H. L. Reed, "Environmental influences on hypothalamic–pituitary–thyroid function and behavior in Antarctica”, Physiology & behavior, vol. 92, no 5, pp. 790-799, 2007.
[69] L. A. Palinkas, F. Glogower, M. Dembert, K. Hansen, and R. Smullen, "Incidence of psychiatric disorders after extended residence in Antarctica”, International Journal of Circumpolar Health, vol. 63, no 2, pp. 157-168, 2004.
[70] L. B. Merabet, D. Maguire, A. Warde, K. Alterescu, R. Stickgold, and A. Pascual-Leone, "Visual hallucinations during prolonged blindfolding in sighted subjects”, Journal of neuro-ophthalmology, vol. 24, no 2, pp. 109-113, 2004.
[71] M. Zuckerman, H. Persky, K. E. Link, and G. K. Basu, "Experimental and subject factors determining responses to sensory deprivation, social isolation, and confinement”, Journal of Abnormal Psychology, vol. 73, no 3p1, pp. 183, 1968.
[72] J. E. Rasmussen, (ed.). Man in isolation and confinement, Routledge, 2017.
[73] C. A. Berry, "View of human problems to be addressed for long-duration space flights”, 1973.
[74] C. Otto, "South Pole Station: An analogue for human performance during long-duration missions to isolated and confined environments: Neurobiology, neurochemistry, and neurostructural changes in humans during prolonged isolation and confinement (White Paper)”, NASA Johnson Space Center, Houston, TX: NASA JSC Behavioral Health and Performance Human Research Program and Space Medicine Division, 2007.
[75] P. E. Kubzansky, "The effects of reduced environmental stimulation on human behavior: a review”, The manipulation of human behavior, pp. 51-95, 1961.
[76] A. Lafontaine, Impact du fonctionnement mindful sur la thymie et le fonctionnement psychique du sous-marinier en mission, Université de Bretagne Occidentale, 2019, confidential defense.
[77] A. Ferragu, Impact sur la perception sensorielle d’une patrouille en sous-marin nucléaire lanceur d’engins, Université de Bretagne Occidentale, 2019, confidential defense.
[78] P. Suedfeld, "What can abnormal environments tell us about normal people? Polar stations as natural psychology laboratories”, Journal of Environmental Psychology, vol. 18, no 1, pp. 95-102, 1998.
[79] K. Weiss, "Adaptation et transitions en milieux inhabituels: le cas des hivernages en bases polaires », Congrès de Psychologie «Changement, regards croisés», 2006.
[80] P. Suedfeld, and G. D. Steel, "The environmental psychology of capsule habitats”, Annual review of psychology, vol. 51, no 1, pp. 227-253, 2000.
[81] J. Stuster, Behavioral issues associated with long-duration space expeditions: review and analysis of astronaut journals: experiment 01-E104 (Journals), National Aeronautics and Space Administration, Johnson Space Center, 2010.
[82] C. Martin-Krumm, F. Fenouillet, A. Csillik, L. Kern, M. Besançon, J. Heutte, ... and E. Diener, "Changes in emotions from childhood to young adulthood”, Child Indicators Research, vol. 11, no 2, pp. 541-561, 2017.
[83] W. E. Mehling, C. Price, J. J. Daubenmier, M. Acree, E. Bartmess, and A. Stewart, "The multidimensional assessment of interoceptive awareness (MAIA)”, PloS one, vol. 7, no 11, pp. e48230, 2012.
[84] J. A. Micoulaud-Franchi, W. P. Hetrick, L. Boyer, A. Bolbecker, M. Aramaki, S. Ystad, ... and M. Cermolacce, "Validation of the French sensory gating inventory: A confirmatory factor analysis”, Psychiatry research, vol. 220, no 3, pp. 1106-1112, 2014.
[85] C. Bernard, "Etude sur la physiologie du cœur", Revue des Deux Mondes (1829-1971), vol. 56, no 1, p. 236-252, 1865.
[86] J. F. Thayer, and R. D. Lane, "A model of neurovisceral integration in emotion regulation and dysregulation”, Journal of affective disorders, vol. 61, no 3, pp. 201-216, 2000.
[87] J. F. Thayer, and G. J. Siegle, "Neurovisceral integration in cardiac and emotional regulation”, IEEE Engineering in Medicine and Biology Magazine, vol. 21, no 4, pp. 24-29, 2002.
[88] J. F. Thayer, and R. D. Lane, "Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration”, Neuroscience & Biobehavioral Reviews, vol. 33, no 2, pp. 81-88, 2009.
[89] R. Smith, J. F. Thayer, S. S. Khalsa, and R. D. Lane, "The hierarchical basis of neurovisceral integration”, Neuroscience & biobehavioral reviews, vol. 75, pp. 274-296, 2017.
[90] L. A. Lipsitz, and A. L. Goldberger, "Loss of' complexity and aging: potential applications of fractals and chaos theory to senescence”, Jama, vol. 267, no 13, pp. 1806-1809, 1992.
[91] P. M. Wayne, B. Manor, V. Novak, M. D. Costa, J. M. Hausdorff, A. L. Goldberger, ... and R. B. Davis, "A systems biology approach to studying Tai Chi, physiological complexity and healthy aging: design and rationale of a pragmatic randomized controlled trial”, Contemporary clinical trials, vol. 34, no 1, pp. 21-34, 2013.
[92] B. Bajaj, and N. Pande, "Mediating role of resilience in the impact of mindfulness on life satisfaction and affect as indices of subjective well-being”, Personality and Individual Differences, vol. 93, pp. 63-67, 2016.
[93] B. D. Dunn, H. C. Galton, R. Morgan, D. Evans, C. Oliver, M. Meyer, ... and T. Dalgleish, "Listening to your heart: How interoception shapes emotion experience and intuitive decision making”, Psychological science, vol. 21, no 12, pp. 1835-1844, 2010.
[94] N. A. De Witte, S. Sütterlin, C. Braet, and S. C. Mueller, "Getting to the heart of emotion regulation in youth: the role of interoceptive sensitivity, heart rate variability, and parental psychopathology”, PloS one, 2016, vol. 11, no 10, pp. e0164615, 2016.
[95] S. W. Porges, "The polyvagal perspective”, Biological psychology, vol. 74, no 2, pp. 116-143, 2007.
[96] G. Salvato, F. Richter, L. Sedeño, G. Bottini, and E. Paulesu, "Building the bodily self‐awareness: Evidence for the convergence between interoceptive and exteroceptive information in a multilevel kernel density analysis study”, Human Brain Mapping, vol. 41, no 2, pp. 401-418, 2020.
[97] G. Moser, and K. Weiss, Espaces de vie: aspects de la relation homme-environnement, Armand Colin, 2003.
[98] A. Schulz, and C. Vögele, "Interoception and stress”, Frontiers in psychology, vol. 6, pp. 993, 2015.
[99] J. L. Huang, A. M. Ryan, K. L. Zabel, and A. Palmer, "Personality and adaptive performance at work: A meta-analytic investigation”, Journal of Applied Psychology, vol. 99, no 1, pp. 162, 2014.
[100] A. Van Ombergen, S. Laureys, S. Sunaert, E. Tomilovskaya, P. M. Parizel, and F. L. Wuyts, "Spaceflight-induced neuroplasticity in humans as measured by MRI: what do we know so far?”, npj Microgravity, vol. 3, no 1, pp. 1-12, 2017.
[101] M. F. Reschke, H. S. Cohen, J. M. Cerisano, J. A. Clayton, R. Cromwell, R. W. Danielson, ... and D. L. Tomko, "Effects of sex and gender on adaptation to space: neurosensory systems”, Journal of Women's Health, vol. 23, no 11, pp. 959-962, 2014.
[102] I. Saliba, M. E. Nader, F. El Fata, and T. Leroux, "Bone anchored hearing aid in single sided deafness: Outcome in right-handed patients”, Auris Nasus Larynx, vol. 38, no 5, pp. 570-576, 2011.
[103] G. Prete, D. Marzoli, A. Brancucci, and L. Tommasi, "Hearing it right: evidence of hemispheric lateralization in auditory imagery”, Hearing Research, vol. 332, pp. 80-86, 2016.
[104] M. A. Little, “An overview of adaptation”, In: Rethinking Human Adaptation: Biological and Cultural Models, Westview Press, Boulder, CO, pp.137, 1983.
[105] J. F. Wohlwill, "Human adaptation to levels of environmental stimulation”, Human Ecology, vol. 2, no 2, pp. 127-147, 1974.
[106] G. Valenza, P. Allegrini, A. Lanatà, E. P. Scilingo, "Dominant Lyapunov exponent and approximate entropy in heart rate variability during emotional visual elicitation”, Frontiers in neuroengineering, vol. 5, pp. 3., 2012.
[107] A. Greco, G. Valenza, A. Lanata, E. P. Scilingo, and L. Citi, "cvxEDA: A convex optimization approach to electrodermal activity processing”, IEEE Transactions on Biomedical Engineering, vol. 63, no 4, pp. 797-804, 2015.
[108] Y. Nagai, H. D. Critchley, E. Featherstone, M. R. Trimble, and R. J. Dolan, "Activity in ventromedial prefrontal cortex covaries with sympathetic skin conductance level: a physiological account of a “default mode” of brain function”, Neuroimage, vol. 22, no 1, pp. 243-251, 2004.
[109] A. Kurita, H. Nagayoshi, Y. Okamoto, B. Takase, T. Ishizuka and H. Oiwa, “Effects of severe hyperbaric pressure on autonomic nerve functions”, Military medicine, vol. 167, no 11, pp.934-938, 2002.