Biocompatible Ionic Liquids in Liquid – Liquid Extraction of Lactic Acid: A Comparative Study

Ionic liquids consisting of a phosphonium cationic
moiety and a saccharinate anion are synthesized and compared with
their precursors, phosphonium chlorides, in reference to their
extraction efficiency towards L-lactic acid. On the base of
measurements of the acid and the water partitioning in the
equilibrium biphasic systems, the molar ratios between acid, water
and ionic liquid are estimated which allows to deduce the lactic acid
extractive pathway. The effect of a salting-out addition that
strengthens hydrophobicity in both phases is studied in view to reveal
the best biphasic system with respect to IL low toxicity and high
extraction efficiency.





References:
[1] H. G. Joglekar, I. Rahman, S. Babu, B. D. Kulkarni, and A. Joshi,
“Comparative assessment of downstream processing options for lactic
acid,” Sep. Purif. Technol., vol. 52, pp. 1-17, 2006.
[2] J. A. Tamada and C. Judson King, “Extraction of carboxylic acids with
amine extractants. 2. Chemical interactions and interpretation of data,”
Ind. Eng. Chem. Res., vol. 29, pp. 1327-1333, 1990.
[3] D. H. Han and W. H. Hong, “Water-enhanced solubilities of lactic acid
in reactive extraction using trioctylamine/various active diluents
systems,” Sep. Sci. Technol., vol. 33, pp. 271-281, 1998.
[4] K. L. Wasewar, V. G. Pangarkar, A. B. M. Heesink, and G. F. Versteeg,
“Intensification of enzymatic conversion of glucose to lactic acid by
reactive extraction,” Chem. Eng. Sci., vol. 58, pp. 3385-3393, 2003. [5] D. Yankov, J. Molinier, G. Kyuchoukov, J. Albet, and G. Malmary,
“Improvement of the lactic acid extraction from aqueous solutions and
simulated fermentation broth by means of mixed extractant and TOA,
partially loaded with HCl, Chem. Biochem. Eng. Quart., vol. 19, pp. 17-
24, 2005.
[6] G. Kyuchoukov, A. Labbaci, J. Albet, and J. Molinier, “Simultaneous
influence of active and “inert” diluents on the extraction of lactic acid by
means of tri-n-octylamine (TOA) and tri-iso-octylamine (TIOA),” Ind.
Eng. Chem. Res., vol. 45, pp. 503-510, 2006.
[7] A. Krzyżaniak, B. Schuur, M. Sukumaran, H. Zuilhof, and A. B. de
Haan, “Extractant screening for liquid-liquid extraction in
environmentally benign production routes,” Chem. Eng. Trans., vol. 24,
pp. 709-714, 2011.
[8] A. Krzyżaniak, M. Leeman, F. Vossebeld, T. J. Visser, B. Schuur, and
A. B. de Haan, “Novel extractants for the recovery of fermentation
derived lactic acid,” Sep. Purif. Technol., vol. 111, pp. 82-89, 2013.
[9] K. L. Wasewar, A. A. Yawalkar, J. A. Moulijn, and V. G. Pangarkar,
“Fermentation of glucose to lactic acid coupled with reactive extraction:
a review,” Ind. Eng. Chem. Res., vol. 43, pp. 5969-5982, 2004.
[10] S. Mallakpour and M. Dinari, “Ionic liquids as green solvents: progress
and prospects,” in Green solvents II: Properties and applications of
ionic liquids, A. Mohammad and Inamuddin, Eds. Dordrecht: Springer
Science+Business Media, 2012, pp. 1-32.
[11] M. Matsumoto, K. Mochiduki, K. Fukunishi, and K. Kondo, “Extraction
of organic acids using imidazolium-based ionic liquids and their toxicity
to Lactobacillus rhamnosus,” Sep. Purif. Technol., vol. 40, pp. 97-101,
2004.
[12] J. Marták and Š. Schlosser, “Extraction of lactic acid by phosphonium
ionic liquids,” Sep. Purif. Technol., vol. 57, pp. 483-494, 2007.
[13] F. S. Oliveira, J. M. M. Araújo, R. Ferreira, L. P. N. Rebelo, and I. M.
Marrucho, “Extraction of L-lactic, L-malic, and succinic acids using
phosphonium-based ionic liquids,” Sep. Purif. Technol., vol. 85, pp.
137-146, 2012.
[14] K. Tonova, I. Svinyarov, and M. G. Bogdanov, “Hydrophobic 3-alkyl-1-
methylimidazolium saccharinates as extractants for L-lactic acid
recovery,” Sep. Purif. Technol., vol. 125, pp. 239-246, 2014.
[15] H. Matsumoto, H. Kageyama, and Y. Miyazaki, “Room temperature
ionic liquids based on small aliphatic ammonium cations and
asymmetric amide anions,” Chem. Commun. vol. 2002, pp. 1726-1727,
2002.
[16] E. B. Carter, S. L. Culver, P. A. Fox, R. D. Goode, I. Ntai, M. D.
Tickell, R. K. Traylor, N. W. Hoffman, and J. H. Davis Jr., “Sweet
success: ionic liquids derived from non-nutritive sweeteners,” Chem.
Commun., vol. 2004, pp. 630-631, 2004.
[17] P. Nockemann, B. Thijs, K. Driesen, C. R. Janssen, K. Van Hecke, L.
Van Meervelt, S. Kossmann, B. Kirchner, and K. Binnemans, “Choline
saccharinate and choline acesulfamate: ionic liquids with low toxicities,”
J. Phys. Chem. B, vol. 111, pp. 5254-5263, 2007.
[18] R. M. Vrikkis, K. J. Fraser, K. Fujita, D. R. MacFarlane, and G. D.
Elliott, “Biocompatible ionic liquids. A new approach for stabilizing
proteins in liquid formulation,” J. Biomech. Eng. vol. 131, paper
074514, 2009.
[19] M. G. Bogdanov, I. Svinyarov, R. Keremedchieva, A. Sidjimov, “Ionic
liquid-supported solid-liquid extraction of bioactive alkaloids. I. New
HPLC method for quantitative determination of glaucine in Glaucium
flavum Cr. (Papaveraceae),” Sep. Purif. Technol., vol. 97, pp. 221-227,
2012.
[20] M. Petkovic, D. O. Hartmann, G. Adamová, K. R. Seddon, L. P. N.
Rebelo, and C. Silva Pereira, “Unravelling the mechanism of toxicity of
alkyltributylphosphonium chlorides in Aspergillus nidulans conidia,”
New J. Chem., vol. 36, pp. 56-63, 2012.
[21] J. Arning, S. Stolte, A. Böschen, F. Stock, W.-R. Pitner, U. Welz-
Biermann, B. Jastorff, and J. Ranke, “Qualitative and quantitative
structure activity relationships for the inhibitory effects of cationic head
groups, functionalised side chains and anions of ionic liquids on
acetylcholinesterase,” Green Chem., vol. 10, pp. 47-58, 2008.
[22] M. G. Bogdanov, D. Petkova, S. Hristeva, I. Svinyarov, and W.
Kantlehner, “New guanidinium-based room-temperature ionic liquids.
Substituent and anion effect on density and solubility in water,” Z.
Naturforsch. B: J. Chem. Sci., vol. 65b, pp. 37-48, 2010.
[23] M. G. Bogdanov, I. Svinyarov, R. Keremedchieva, and A. Sidjimov,
“Ionic liquid-supported solid-liquid extraction of bioactive alkaloids. I.
New HPLC method for quantitative determination of glaucine in
Glaucium flavum Cr. (Papaveraceae),” Sep. Purif. Technol., vol. 97, pp.
221-227, 2012.
[24] M. G. Freire, C. M. S. S. Neves, I. M. Marrucho, J. A. P. Coutinho, and
A. M. Fernandes, “Hydrolysis of tetrafluoroborate and
hexafluorophosphate counter ions in imidazolium-based ionic liquids,”
J. Phys. Chem. A, vol. 114, pp. 3744-3749, 2010.
[25] X. J. Cui, S. G. Zhang, F. Shi, Q. H. Zhang, X. Y. Ma, L. J. Lu, and Y.
Q. Deng, “The influence of the acidity of ionic liquids on catalysis,”
Chem. Sus. Chem., vol. 3, pp. 1043-1047, 2010.
[26] L. Cammarata, S. G. Kazarian, P. A. Salter, and T. Welton, “Molecular
states of water in room temperature ionic liquids,” Phys. Chem. Chem.
Phys., vol. 3, pp. 5192-5200, 2001.
[27] J. Sirieix-Plénet, L. Gaillon, and P. Letellier, “Behaviour of a binary
solvent mixture constituted by an amphiphilic ionic liquid, 1-decyl-3-
methylimidazolium bromide and water: Potentiometric and
conductimetric studies,” Talanta, vol. 63, pp. 979-986, 2004.
[28] J. Dwan, D. Durant, and K. Ghandi, “Nuclear magnetic resonance
spectroscopic studies of the trihexyl (tetradecyl) phosphonium chloride
ionic liquid mixtures with water,” Cent. Eur. J. Chem., vol. 6 (3), pp.
347-358, 2008.