Behavior of Optical Fiber Aged in CTAC Solutions

The evolution of silica optical fiber strength aged in cetyltrimethylammonium chloride solution (CTAC) has been investigated. If the solution containing surfactants presents appreciable changes in physical and chemical properties at the critical micelle concentration (CMC), a non negligible mechanical behavior fiber change is observed for silica fiber aged in cationic surfactants as CTAC which can lead to optical fiber reliability questioning. The purpose of this work is to study the mechanical behavior of silica coated and naked optical fibers in contact with CTAC solution at different concentrations. Result analysis proves that the immersion in CTAC drastically decreases the fiber strength and specially near the CMC point. Beyond CMC point, a small increase of fiber strength is analyzed and commented.





References:
[1] T. Takeo, H. Hattori, ÔÇÿÔÇÿOptical fiber sensor for measuring refractive
index--, Jpn. J. Appl. Phys., vol . 21, pp.1509-1512, 1982.
[2] M. Ogita, K. Yoshimura, M. A. Mehta, T. Fujinami, ÔÇÿÔÇÿThe detection of
critical micelle concentration based on the adsorption effect using
optical fibers--, Jpn J. Appl. Phys., vol.37, pp. 85-87, 1998.
[3] M. Ogita, Y. Nagai, M. A. Mehta, T. Fujinami, ÔÇÿÔÇÿApplication of the
adsorption effect of optical fibres for the determination of critical
micelle concentration--, Sens. Actuators B, vol.64, pp.147-151, 2000.
[4] M. Ogita, T. Hasegawa, M. A. Mehta, T. Fujinami, Y. Hatanaka,
ÔÇÿÔÇÿIndustrial utilization of the adsorption effect of optical fibers for
detection of critical micelle concentration--, in Proc. of IECON, 2000,
pp.701-705.
[5] N. Li, H. Luo, S. Liu, ÔÇÿÔÇÿA new method for the determination of the
critical micelle concentration of Triton X-100 in the absence and
presence of β-cyclodextrin by resonance Rayleigh scattering
technology--, Spectrochim. Acta, Part A 60, pp.1811-1815, 2004.
[6] C. H. Tan, Z. J. Huang and X. G. Huang, ÔÇÿÔÇÿRapid determination of
surfactant critical micelle concentration in aqueous solutions using fiberoptic
refractive index sensing--, Anal. Biochem., vol. 401, pp.144-147,
2010.
[7] H. Isobe, C. D. Singh, H. Katsumata, H. Suzuki, T. Fujinami, M. Ogita,
ÔÇÿÔÇÿMeasurements of critical micelle concentration (CMC) using optical
fiber covered with porous sol-gel cladding--, Appl. Surf. Sci., Vol. 224,
pp. 199-202, 2005.
[8] C. D. Singh, Y. Shibata, M. Ogita, ÔÇÿÔÇÿCritical micelle concentration
(CMC) measurements using U-Shaped fiber optic probes--, Sens.
Actuators B, vol. 96, pp. 130-132, 2003.
[9] M. Archenault, H. Gagnaire, J. P. Goure, N. Jaffrezic-Renault, ÔÇÿÔÇÿA
simple intrinsic optical-fibre chemical sensor--, Sens. Actuators B, vol. 8
(2), pp. 161-166,1992.
[10] B. D. Gupta, C. D. Singh, A. Sharma, ÔÇÿÔÇÿFiber optic evanescent field
adsorption sensor: effect of launching condition and the geometry of the
sensing region--, Opt. Eng., vol. 33, pp. 1864-1868, 1994.
[11] D. M. Nevskaia, M. L. R. Cervantes, A. G. Ruiz, J. de D. L. Gonzalez,
ÔÇÿÔÇÿInteraction of Triton X-100 on silica: A relationship between surface
characteristics and adsorption isotherms--, J. Chem. Technol
Biotechnol., vol. 63, Issue 3, pp. 249-256, 1995.
[12] T. V. D. Boomgaard, T. F. Tadros and J. Lyklema, ÔÇÿÔÇÿAdsorption of nonionic
surfactants on lattices and silica in combination with stability
studies--, J. Colloid Interface Sci., vol. 116 (1), pp. 8-16, 1987.
[13] E. A. Lindholm, J. Li, A. Hokansson, B. Slyman and D. Burgess,
ÔÇÿÔÇÿAging behavior of optical fibers in aqueous environments--, in
Proceeding of SPIE, ISBN 9780819453884, 2004, vol.5465, pp. 25-32
[14] H. H. Yuce, ÔÇÿÔÇÿAging behavior of optical fibers--, in Proc. of 41st Int.
Wire & Cable Symposium, Reno, Nevada, pp.605-612, 1992.
[15] J. L. Amstrong, M. J. Matthewson, M. G. Juarez and C. Y. Chou, ÔÇÿÔÇÿThe
effect of diffusion rates in optical fiber polymer coatings on aging--,
SPIE Conference on Optical Fiber Reliability and Testing, in Proc.
Soc. Photo-Opt. Instrum. Eng., 3842, pp. 62-69, 1999.