An Innovation and Development System for a New Hybrid Composite Technology in Aerospace Industry

Lightweight design represents an important key to
successful implementation of energy-saving, fuel-efficient and
environmentally friendly means of transport in the aerospace and
automotive industry. In this context the use of carbon fibre reinforced
plastics (CFRP) which are distinguished by their outstanding
mechanical properties at relatively low weight, promise significant
improvements. Due to the reduction of the total mass, with the
resulting lowered fuel or energy consumption and CO2 emissions
during the operational phase, commercial aircraft will increasingly be
made of CFRP. An auspicious technology for the efficient and
economic production of high performance thermoset composites and
hybrid structures for future lightweight applications is the
combination of carbon fibre sheet moulding compound, tailored
continuous carbon fibre reinforcements and metallic components in a
one-shot pressing and curing process. This paper deals with a hybrid
composite technology for aerospace industries, which was developed
with the help of a special innovation and development system.





References:
[1] JEC Composites, “Over-mouldedorgano sheets,” in JEC Composites,
vol. 85, JEC Composites, 2013, pp. 22-27.
[2] K. Steinbach, G.P. Ehnert, K. Bieniek, „Neue Entwicklungen zur
Erhöhung der Festigkeits- und Steifigkeitseigenschaften von SMC für
belastbare Formteile,“ in Conference Proceedingsof24th AVK-Tagung,
Berlin, 1991.
[3] H.G. Kia, Sheet moulding compounds - science and technology. Ohio,
USA: Hanser / Gardener Publications, Inc., 1993.
[4] M. Cabrera-Rios, J.M. Castro, “An Economical Way of Using Carbon
Fibers in Sheet Molding Compound Compression Molding for
Automotive Applications,” in Polymer Composite, No. 27, vol. 6, 2006,
pp.718-722.
[5] S. Grasser, „Composite-Metall-Hybridstrukturen unter Berücksichtigung
großserientauglicher Fertigungsprozesse,“ in Conference Proceedingsof
Symposium Material Innovativ, Ansbach, 2009.
[6] A. Jäschke, U. Dajek, „Dachrahmen in Hybridbauweise,“ in
Sonderdruck aus VDI-Tagungsband, vol. 4260, Düsseldorf: VDI-Verlag,
2004, pp. 25-45.
[7] E. Reuther, „Kohlefaser SMC für Strukturteile,“ in 7th Internationale
AVK-TV Tagung, Baden Baden, 2004, pp. A6-1 -A6-6.
[8] P. Stachel, “Carbon fibre reinforced SMC for automotive applications,”
in 5th Automotive Seminar – SMC/BMC - New challenges in Automotive,
Landshut, 2006.
[9] G. Spur, G. Eßer, Innovationssystem Produktionstechnik. München:
Hanser, 2013.
[10] K. Ehrlenspiel, Integrierte Produktentwicklung: Denkabläufe,
Methodeneinsatz, Zusammenarbeit. 4thed., München: Hanser, 2009.
[11] G. Pahl, W. Beitz, J. Feldhusen, K.-H. Grote, Konstruktionslehre:
Grundlagen erfolgreicher Produktentwicklung – Methoden und
Anwendung. 7thed., Berlin: Springer, 2007.
[12] B. Schäppi, M.M. Andreasen, M. Kirchgeorg, F.-J. Radermacher,
Handbuch Produktentwicklung. München: Hanser, 2005.
[13] G. Johnson, K. Scholes, R. Whittington, Exploring Corporate Strategy.
8th ed., Harlow, England: Pearson Education Limited, 2008.
[14] W. Engeln, Methoden der Produktentwicklung: Skripten
Automatisierungstechnik. 2nded., München: OldenbourgIndustrieverlag,
2011.
[15] C. Carlson, Effective FMEAs: Achieving Safe, Reliable, and Economical
Products and Processes Using Failure Mode And EffectsAnalysis.
NewJersey, USA: John Wiley & Sons, Hoboken, 2012.