Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration

Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.





References:
[1] Kuonen, Samuel. "Estimating greenhouse gas emissions from travel-a GIS-based study." Geographica Helvetica 70.3 (2015): 185.
[2] Lombardi, Ing Pio, et al. "Optimal management tool for micro grids with a high penetration of renewable energy sources." power 1.2 (2013): 1.
[3] Hau, Lee-Cheun, et al. "Smart Grid–The Present and Future of Smart Physical Protection: A Review." International Journal of Energy, Information and Communications 4.4 (2013): 43-53.
[4] Dahalan, Wardiah Mohd, and Hazlie Mokhlis. "Network reconfiguration for loss reduction with distributed generations using PSO." Power and Energy (PECon), 2012 IEEE International Conference on. IEEE, 2012.
[5] Yao, Liangzhong, et al. "Congestion management of transmission systems using FACTS." Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES. IEEE, 2005.
[6] Shariatkhah, Mohammad Hosein, and Mahmoud Reza Haghifam. "Using feeder reconfiguration for congestion management of smart distribution network with high DG penetration." (2012): 316-316.
[7] Bouhouras, Aggelos S., et al. "Reducing network congestion in distribution networks with high DG penetration via network reconfiguration." European Energy Market (EEM), 2014 11th International Conference on the. IEEE, 2014.
[8] Bai, Qinghai. "Analysis of particle swarm optimization algorithm." Computer and information science 3.1 (2010): 180.
[9] Samuel, G. Giftson, and C. Christober Asir Rajan. "Hybrid: particle swarm optimization–genetic algorithm and particle swarm optimization–shuffled frog leaping algorithm for long-term generator maintenance scheduling." International Journal of Electrical Power & Energy Systems 65 (2015): 432-442.
[10] Tsai, Men-Shen, and Wu-Chang Wu. A novel binary coding particle swarm optimization for feeder reconfiguration. INTECH Open Access Publisher, 2009.
[11] Lee, Sangwook, et al. "Modified binary particle swarm optimization." Progress in Natural Science 18.9 (2008): 1161-1166.
[12] Chang, Chung-Fu. "Reconfiguration and capacitor placement for loss reduction of distribution systems by ant colony search algorithm." IEEE Transactions on Power Systems 23.4 (2008): 1747-1755.
[13] Hamouda, Abdellatif, and Khaled Zehar. "Efficient load flow method for radial distribution feeders." Journal of Applied Sciences 6 (2006): 2741-2748.