A Mathematical Modelling to Predict Rhamnolipid Production by Pseudomonas aeruginosa under Nitrogen Limiting Fed-Batch Fermentation

In this study, a mathematical model was proposed and
the accuracy of this model was assessed to predict the growth of
Pseudomonas aeruginosa and rhamnolipid production under nitrogen
limiting (sodium nitrate) fed-batch fermentation. All of the
parameters used in this model were achieved individually without
using any data from the literature.
The overall growth kinetic of the strain was evaluated using a
dual-parallel substrate Monod equation which was described by
several batch experimental data. Fed-batch data under different
glycerol (as the sole carbon source, C/N=10) concentrations and feed
flow rates were used to describe the proposed fed-batch model and
other parameters. In order to verify the accuracy of the proposed
model several verification experiments were performed in a vast
range of initial glycerol concentrations. While the results showed an
acceptable prediction for rhamnolipid production (less than 10%
error), in case of biomass prediction the errors were less than 23%. It
was also found that the rhamnolipid production by P. aeruginosa was
more sensitive at low glycerol concentrations.
Based on the findings of this work, it was concluded that the
proposed model could effectively be employed for rhamnolipid
production by this strain under fed-batch fermentation on up to 80 g l-
1 glycerol.





References:
[1] J. D. Desai, and I. M. Banat, "Microbial production of surfactants and
their commercial potential,” Microbiol. Mol. Biol. Rev., 61, 1997, 47-64.
[2] G. Soberón-Chávez, Biosurfactants: from genes to applications.
Springer, New York, 2011.
[3] C. F. C. D. Rosa, M. Michelon, J. F. D. M Burkert, S. J. Kalil, and C. A.
V. Burkert, "Production of a rhamnolipid-type biosurfactant by
Pseudomonas aeruginosa LBM10 grown on glycerol,” Afr. J.
Biotechnol., 9, 2010, 9012-9017.
[4] A. A. Koutinas, R. Wang, I. K. Kookos, and C. Webb, "Kinetic
parameters of Aspergillus awamori in submerged cultivations on whole
wheat flour under oxygen limiting conditions,” Biochem. Eng. J., 16,
2003, 23-34.
[5] L. Z. Chen, S. K. Nguang, and X. D. Chen, Modelling and optimization
of biotechnological processes: Artificial intelligence approaches.
Springer, New York, 2006.
[6] Y. Li, H. Jiang, X. Du, X. Huang, X. Zhang, Y. Xu, and Y. Xu,
"Enhancement of phenazine-1-carboxylic acid production using batch
and fed-batch culture of gacA inactivated Pseudomonas sp. M18G,”
Bioresour. Technol., 101, 2010, 3649-3656.
[7] C. Park, T. H. Kim, S. Kim, J. Lee, and S. W. Kim, "Biokinetic
parameter estimation for degradation of 2, 4, 6-trinitrotoluene (TNT)
with Pseudomonas putida KP-T201,” J. Biosci. Bioeng., 94, 2002, 57-
61.
[8] N. P. Guerra, A. T. Agrasar, C. L. Macı́as, and L. Pastrana, "Modelling
the fed-batch production of pediocin using mussel processing wastes,”
Process Biochem., 40, 2005, 1071-1083.
[9] S. Khanna, and A. K. Srivastava, "Computer simulated fed-batch
cultivation for over production of PHB: A comparison of simultaneous
and alternate feeding of carbon and nitrogen,” Biochem. Eng. J., 27,
2006, 197-203.
[10] N. P. Guerra, P. F. Bernárdez, and L. P. Castro, "Modelling the stress
inducing biphasic growth and pediocin production by Pediococcus
acidilactici NRRL B-5627 in re-alkalized fed-batch cultures,” Biochem.
Eng. J., 40, 2008, 465-472.
[11] S. Srivastava, and A. K. Srivastava, "Biological phosphate removal by
model based fed-batch cultivation of Acinetobacter calcoaceticus,”
Biochem. Eng. J., 40, 2008, 227-232.
[12] C. H. Luna-Flores, J. J. Ramírez-Cordova, C. Pelayo-Ortiz, R. Femat,
and E. J. Herrera-Lopez, "Batch and fed-batch modeling of carotenoids
production by Xanthophyllomyces dendrorhous using Yucca fillifera
date juice as substrate,” Biochem. Eng. J., 53, 2010, 131-136.
[13] H. Song, M. H. Eom, S. Lee, J. Lee, J. H. Cho, and D. Seung, "Modeling
of batch experimental kinetics and application to fed-batch fermentation
of Clostridium tyrobutyricum for enhanced butyric acid production,”
Biochem. Eng. J., 53, 2010, 71-76.
[14] A. Roosta, A. Jahanmiri, D. Mowla, and A. Niazi, "Mathematical
modeling of biological sulfide removal in a fed batch bioreactor,”
Biochem. Eng. J., 58, 2011, 50-56.
[15] S. N. R. L. Silva, C. B. B. Farias, R. D. Rufino, J. M. Luna, and L. A.
Sarubbo, "Glycerol as substrate for the production of biosurfactant by
Pseudomonas aeruginosa UCP0992,” Colloids Surf., B, 79, 2010, 174-
183.
[16] E. Haba, M. J. Espuny, M. Busquets and A. Manresa, "Screening and
production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB
40044 from waste frying oils,” J. Appl. Microbiol., 88, 2000, 379-387.
[17] T. Masuko, A. Minami, N. Iwasaki, T. Majima, S. I. Nishimura, and Y.
C. Lee, "Carbohydrate analysis by a phenol–sulfuric acid method in
microplate format,” Anal. Biochem., 339, 2005, 69-72.
[18] M. GhomiAvili, M. H. Fazaelipoor, S. A. Jafari, S. A. Ataei,
"Comparison between batch and fed-batch production of rhamnolipid by
Pseudomonas aeruginosa,” Iran. J. Biotechnol., 10, 2012.
[19] I. J. Dunn, E. Heinzle, J. Ingham, and J. E. Prenosil, Biological reaction
engineering: dynamic modelling fundamentals with simulation
examples. 2nd ed. Wiley-VCH, New York, 2003.
[20] G. G. Evans, and J. Furlong, Environmental biotechnology: Theory and
application. 2nd ed. Wiley, 2010.
[21] D. J. Kim, J. W. Choi, N. C. Choi, B. Mahendran, and C. E. Lee,
"Modeling of growth kinetics for Pseudomonas spp. during benzene
degradation,” Appl. Microbiol. Biotechnol., 69, 2005, 456-462.
[22] H. Beyenal, S. N. Chen, and Z. Lewandowski, "The double substrate
growth kinetics of Pseudomonas aeruginosa,” Enzyme Microb.
Technol., 32, 2003, 92-98.
[23] A. Ghosalkar, V. Sahai, and A. Srivastava, "Optimization of chemically
defined medium for recombinant Pichia pastoris for biomass
production,” Bioresour. Technol., 99, 2008, 7906-7910.
[24] D. Hekmat, R. Bauer, and J. Fricke, "Optimization of the microbial
synthesis of dihydroxyacetone from glycerol with Gluconobacter
oxydans,” Bioprocess. Biosyst. Eng., 26, 2003, 109-116.
[25] R. Usaite, K. R. Patil, T. Grotkjær, J. Nielsen, and B. Regenberg,
"Global transcriptional and physiological responses of Saccharomyces
cerevisiae to ammonium, L-alanine, or L-glutamine limitation,” Appl.
Environ. Microbiol., 72, 2006, 6194-6203.
[26] J. L. Casas López, J. A. Sánchez Pérez, J. M. Fernández Sevilla, F. G.
Acién Fernández, E. Molina Grima, and Y. Chisti, "Production of
lovastatin by Aspergillus terreus: effects of the C: N ratio and the
principal nutrients on growth and metabolite production,” Enzyme
Microb. Technol., 33, 2003, 270-277.
[27] O. T. Ramírez, R. Zamora, R. Quintero, and A. López-Munguía,
"Exponentially fed-batch cultures as an alternative to chemostats: The
case of penicillin acylase production by recombinant E. coli,” Enzyme
Microb. Technol., 16, 1994, 895-903.
[28] K. M. Lee, S. H. Hwang, S. D. Ha, J. H. Jang, D. J. Lim, and J. Y. Kong,
"Rhamnolipid production in batch and fed-batch fermentation using
Pseudomonas aeruginosa BYK-2 KCTC 18012P,” Biotechnol.
Bioprocess Eng., 9, 2004, 267-273.
[29] C. Larsson, G. Lidén, C. Niklasson, and L. Gustafsson, "Calorimetric
control of fed-batch cultures of Saccharomyces cerevisiae,” Bioprocess.
Eng., 7, 1991, 151-155.
[30] S. K. Yoon, W. K. Kang, and T. H. Park, "Fed-batch operation of
recombinant Escherichia coli containing trp promoter with controlled
specific growth rate,” Biotechnol. Bioeng., 43, 1994, 995-999.
[31] H. J. Oberle, and B. Sothmann, "Numerical computation of optimal feed
rates for a fed-batch fermentation model,” J. Optim. Theory Appl., 100,
1999, 1-13.
[32] J. F. Van Impe, and G. Bastin, "Optimal adaptive control of fed-batch
fermentation processes,” Control Eng. Pract., 3, 1995, 939-954.
[33] G. Birol, C. Ündey, and A. Cinar, "A modular simulation package for
fed-batch fermentation: penicillin production,” Comput. Chem. Eng., 26,
2002, 1553-1565.
[34] A. Ashoori, B. Moshiri, A. Khaki-Sedigh, and M. R. Bakhtiari, "Optimal
control of a nonlinear fed-batch fermentation process using model
predictive approach,” J. Process Control, 19, 2009, 1162-1173.