A High Thermal Dissipation Performance Polyethyleneterephthalate Heat Pipe

A high thermal dissipation performance polyethylene terephthalate heat pipe has been fabricated and tested in this research. Polyethylene terephthalate (PET) is used as the container material instead of copper. Copper mesh and methanol are sealed in the middle of two PET films as the wick structure and working fluid. Although the thermal conductivity of PET (0.15-0.24 W/m·K) is much smaller than copper (401 W/m·K), the experiment results reveal that the PET heat pipe can reach a minimum thermal resistance of 0.146 (oC/W) and maximum effective thermal conductivity of 18,310 (W/m·K) with 36.9 vol% at 26 W input power. However, when the input power is larger than 30 W, the laminated PET will debond due to the high vapor pressure of methanol.





References:
[1] X. L. Xie, Y. L. He, W. Q. Tao, H. W. Yang, “ An experimental
investigation on a novel high-performance integrated heat pipe-heat sink
for high-flux chip cooling,” Appl. Therm. Eng., vol. 28, pp.433–439, Apr.
2008.
[2] Y. C. Weng, H. P. Cho, C. C. Chang, S. L. Chen, “ Heat pipe with PCM
for electronic cooling, ” Appl. Energy, vol. 88, pp. 1825–1833, May 2011.
[3] T. Dobre, O. C. Pârvulescu, A. Stoica, G. Iavorschi, “Characterization of
cooling systems based on heat pipe principle to control operation
temperature of high-tech electronic components, ” Appl. Therm. Eng., vol.
30, pp. 2435–2441, Nov. 2010.
[4] G. Pei, H. Fu, H. Zhu, J. Ji, “ Performance study and parametric analysis
of a novel heat pipe PV/T system, ” Energy, vol. 37, pp. 384–395, Jan.
2012.
[5] G. Pei, H. Fu, J. Ji, T. Chow, T. Zhang, “Annual analysis of heat pipe
PV/T systems for domestic hot water and electricity production,” Energy
Conv. Manag., vol. 56, pp. 8–21, Apr. 2012.
[6] W. Hea, Y. Su, S. B. Riffat, J. X. Hou, J. Ji, “ Parametrical analysis of the
design and performance of a solar heat pipe thermoelectric generator
unit, ” Appl. Energy, vol. 88, pp. 5083–508, Dec. 2011.
[7] N. Miljkovic, E. N. Wang, “Modeling and optimization of hybrid solar
thermoelectric systems with thermosyphons,” Sol. Energy, vol. 85, pp.
2843–2855, Nov. 2011.
[8] P. Meena, S. Rittidech, N. Poomsa-ad, “ Closed-loop oscillating heat-pipe
with check valves (CLOHP/CVs) air-preheater for reducing relative
humidity in drying systems, ”Appl. Energy, vol. 84, pp. 363–373, Apr.
2007.
[9] S. Rittidech, N. Pipatpaiboon, P. Terdtoon, “Heat-transfer characteristics
of a closed-loop oscillating heat-pipe with check valves,” Appl. Energy,
vol. 84, pp.565–577, May 2007.
[10] D. A. Reay, P. A. Kew, Heat pipes, 5th ed., Butterworth-Heinemann,
Boston, 2006.
[11] K. Take, R. L. Webb, “Thermal performance of integrated plate heat pipe
with a heat spreader,” J. Electron. Packag., vol. 123, pp. 189–195, Apr.
2000.
[12] S. Lips, F. Lefèvre, J. Bonjou, “Nucleate boiling in a flat grooved heat
pipe,” Int. J. Therm. Sci., vol. 48, pp. 1273–1278, July 2009.
[13] G. S. Hwang, Y. Nam, E. Fleming, P. Dussinger, Y. S. Ju, M. Kaviany,
“Multi-artery heat pipe spreader: Experiment, ” Int. J. Heat Mass Transf.,
vol. 53, pp. 2662–2669, June 2010.
[14] J. Wang, “Experimental investigation of the transient thermal
performance of a bent heat pipe with grooved surface,” Appl. Energy, vol.
86, pp. 2030–2037, Oct. 2009.
[15] Y. X. Wang, G. P. Peterson, “Capillary evaporation in microchanneled
polymer films,” J. Thermophys. Heat Transf. vol.17, pp.354–359,
July-Sep. 2003.
[16] K. Tanaka, Y. Abe, M. Nakagawa, C. Piccolo, R. Savinoe, “ Low-gravity
experiments of lightweight fexible heat pipe panels with self-rewetting
fluids, ” Ann. NY. Acad. Sci., vol. 1161, pp. 554–561, Apr. 2009.
[17] W.W. Wits, T. H. J. Vaneker, “Integrated design and manufacturing of
flat miniature heat pipes using printed circuit board technology,” IEEE
Trans. Compon. Pack. Technol., vol. 33, pp. 398–408, June 2010.
[18] C. Oshman, B. Shi, C. Li, R. Yang, Y. C. Lee, G. P. Peterson, et al., “ The
development of polymer-Based flat heat pipes, ” J. Microelectromech.
Syst., vol. 20, pp. 410–417, Apr. 2011.
[19] H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, et al., “ A
transparent, flexible, low-temperature, and solution-processible graphene
composite electrode, ” Adv. Funct. Mater., vol. 20, pp. 2893–2902, Sep.
2010.
[20] C. Feng, K. Liu, J. S. Wu, L. Liu, J. S. Cheng, Y. Zhang, et al., “ Flexible,
stretchable, transparent conducting films made from superaligned carbon
nanotubes, ” Adv. Funct. Mater., vol. 20, pp. 885–891, Mar. 2010.
[21] S. Lips, F. Lefèvre, J. Bonjour, “Combined effects of the filling ratio and
the vapour space thickness on the performance of a flat plate heat pipe,”
Int. J. Heat Mass Transf., vol. 53, pp. 694–702, Jan. 2010.
[22] A. A. El-Nasr, S. M. El-Haggar, “Effective thermal conductivity of heat
pipes,” Heat Mass Transf., vol. 32, pp. 97–101, Nov. 1996.
[23] RC Dorf. The engineering handbook, 2nd ed., Boca Raton, CRC Press,
2004.