Effect of Zinc Chloride Activation on Physicochemical Characteristics of Cassava Peel and Waste Bamboo Activated Carbon

Cassava peels and bamboo waste materials discarded from construction are two sources of waste that could constitute serious menace where they exist in large quantities and inadequately handled. The study examined the physicochemical characteristics of activated carbon materials derived from cassava peels and bamboo waste materials discarded from construction site. Both materials were subjected to carbonization and chemical activation using zinc chloride. Results show that the chemical activation of the materials had a more effect on pore formation in cassava peels than in bamboo materials. Bamboo material exhibited a reverse trend for zinc and sulphate ion decontamination efficiencies as the value of zinc chloride impregnation varied unlike cassava peel carbon biomass which exhibited a more consistent result of decontamination efficiency for the seven contaminants tested. Although waste bamboo biomass exhibited higher adsorption intensity as indicated by values of decontamination for most of the contaminants tested, the cassava peel carbon biomass showed a more balanced adsorption level.

Mitigation of Nitrate Pollution in Wastewater: A Case Study of the Treatment of Cassava Processing Effluent Using Cassava Peel Carbon Material

The study investigated efficiency cassava peel carbon and Zinc Chloride activated cassava peel carbon at 1:3, 2:3 and 1:1 activation levels in the removal of nitrates from oxidized cassava processing wastewater. Results showed that the CPC and CPAC were effective in adsorption of nitrates. A summary of results from the study revealed that CPAC at 1:3 exhibited the highest initial decontamination (69.5% after 2 hrs) while CPAC at 1:1 activation ratio showed a slower initial decontamination rate. The CPC & CPAC exhibited Langmuir Rα values of 0.15, 0.11, 0.09, and 0.07 for the 0:1, 1:3, 2:3 and 1:1 confirming its suitability as adsorption material.